XL/erasure-read: Add Comments and enable bitrot detection.

master
Krishna Srinivas 9 years ago
parent 17efaaa902
commit d4bea5fbf8
  1. 146
      erasure-readfile.go
  2. 3
      erasure-utils.go
  3. 5
      xl-v1-object.go

@ -17,7 +17,6 @@
package main package main
import ( import (
"bytes"
"encoding/hex" "encoding/hex"
"errors" "errors"
"io" "io"
@ -28,51 +27,72 @@ import (
// erasureReadFile - read bytes from erasure coded files and writes to given writer. // erasureReadFile - read bytes from erasure coded files and writes to given writer.
// Erasure coded files are read block by block as per given erasureInfo and data chunks // Erasure coded files are read block by block as per given erasureInfo and data chunks
// are decoded into a data block. Data block is trimmed for given offset and length, // are decoded into a data block. Data block is trimmed for given offset and length,
// then written to given writer. This function also supports bit-rot detection by // then written to given writer. This function also supports bit-rot detection by
// verifying checksum of individual block's checksum. // verifying checksum of individual block's checksum.
func erasureReadFile(writer io.Writer, disks []StorageAPI, volume string, path string, partName string, eInfos []erasureInfo, offset int64, length int64, totalLength int64) (int64, error) { func erasureReadFile(writer io.Writer, disks []StorageAPI, volume string, path string, partName string, eInfos []erasureInfo, offset int64, length int64, totalLength int64) (int64, error) {
min := func(a int64, b int64) int {
if a < b {
return int(a)
}
return int(b)
}
// Total bytes written to writer
bytesWritten := int64(0)
// Gather previously calculated block checksums.
// blockCheckSums := metaPartBlockChecksums(disks, eInfos, partName)
// Pick one erasure info. // Pick one erasure info.
eInfo := pickValidErasureInfo(eInfos) eInfo := pickValidErasureInfo(eInfos)
// Data chunk size on each block. // Gather previously calculated block checksums.
chunkSize := getEncodedBlockLen(eInfo.BlockSize, eInfo.DataBlocks) blockCheckSums := metaPartBlockChecksums(disks, eInfos, partName)
orderedBlockCheckSums := make([]checkSumInfo, len(disks))
// Get block info for given offset, length and block size.
startBlock, bytesToSkip := getBlockInfo(offset, eInfo.BlockSize)
// []orderedDisks will have first eInfo.DataBlocks disks as data disks and rest will be parity.
orderedDisks := make([]StorageAPI, len(disks)) orderedDisks := make([]StorageAPI, len(disks))
for index := range disks { for index := range disks {
blockIndex := eInfo.Distribution[index] blockIndex := eInfo.Distribution[index]
orderedDisks[blockIndex-1] = disks[index] orderedDisks[blockIndex-1] = disks[index]
orderedBlockCheckSums[blockIndex-1] = blockCheckSums[index]
} }
// bitrotVerify verifies if the file on a particular disk does not have bitrot by verifying the hash of
// the contents of the file.
bitrotVerify := func() func(diskIndex int) bool {
verified := make([]bool, len(orderedDisks))
// Return closure so that we have reference to []verified and not recalculate the hash on it
// everytime the function is called for the same disk.
return func(diskIndex int) bool {
if verified[diskIndex] {
return true
}
isValid := isValidBlock(orderedDisks[diskIndex], volume, path, orderedBlockCheckSums[diskIndex])
verified[diskIndex] = isValid
return isValid
}
}()
// Total bytes written to writer
bytesWritten := int64(0)
// chunkSize is roughly BlockSize/DataBlocks.
// chunkSize is calculated such that chunkSize*DataBlocks accommodates BlockSize bytes.
// So chunkSize*DataBlocks can be slightly larger than BlockSize if BlockSize is not divisible by
// DataBlocks. The extra space will have 0-padding.
chunkSize := getEncodedBlockLen(eInfo.BlockSize, eInfo.DataBlocks)
startBlock, endBlock, bytesToSkip := getBlockInfo(offset, totalLength, eInfo.BlockSize)
// For each block, read chunk from each disk. If we are able to read all the data disks then we don't
// need to read parity disks. If one of the data disk is missing we need to read DataBlocks+1 number
// of disks. Once read, we Reconstruct() missing data if needed and write it to the given writer.
for block := startBlock; bytesWritten < length; block++ { for block := startBlock; bytesWritten < length; block++ {
// curChunkSize will be chunkSize except for the last block because the size of the last block
// can be less than BlockSize.
curChunkSize := chunkSize curChunkSize := chunkSize
if totalLength-offset+bytesWritten < curChunkSize { if block == endBlock && (totalLength%eInfo.BlockSize != 0) {
curChunkSize = getEncodedBlockLen(totalLength-offset+bytesWritten, eInfo.DataBlocks) // If this is the last block and size of the block is < BlockSize.
curChunkSize = getEncodedBlockLen(totalLength%eInfo.BlockSize, eInfo.DataBlocks)
} }
// Allocate encoded blocks up to storage disks. // Each element of enBlocks holds curChunkSize'd amount of data read from its corresponding disk.
enBlocks := make([][]byte, len(disks)) enBlocks := make([][]byte, len(disks))
// Figure out the number of disks that are needed for the read. // Figure out the number of disks that are needed for the read.
// If all the data disks are available then dataDiskCount = eInfo.DataBlocks // We will need DataBlocks number of disks if all the data disks are up.
// Else dataDiskCount = eInfo.DataBlocks + 1 // We will need DataBlocks+1 number of disks even if one of the data disks is down.
diskCount := 0 diskCount := 0
// Count the number of data disks that are up.
for _, disk := range orderedDisks[:eInfo.DataBlocks] { for _, disk := range orderedDisks[:eInfo.DataBlocks] {
if disk == nil { if disk == nil {
continue continue
@ -81,11 +101,15 @@ func erasureReadFile(writer io.Writer, disks []StorageAPI, volume string, path s
} }
if diskCount < eInfo.DataBlocks { if diskCount < eInfo.DataBlocks {
// Not enough data disks up, so we need DataBlocks+1 number of disks for reed-solomon Reconstruct()
diskCount = eInfo.DataBlocks + 1 diskCount = eInfo.DataBlocks + 1
} }
wg := &sync.WaitGroup{} wg := &sync.WaitGroup{}
// current disk index from which to read, this will be used later in case one of the parallel reads fails.
index := 0 index := 0
// Read from the disks in parallel.
for _, disk := range orderedDisks { for _, disk := range orderedDisks {
if disk == nil { if disk == nil {
index++ index++
@ -94,9 +118,19 @@ func erasureReadFile(writer io.Writer, disks []StorageAPI, volume string, path s
wg.Add(1) wg.Add(1)
go func(index int, disk StorageAPI) { go func(index int, disk StorageAPI) {
defer wg.Done() defer wg.Done()
ok := bitrotVerify(index)
if !ok {
// So that we don't read from this disk for the next block.
orderedDisks[index] = nil
return
}
buf := make([]byte, curChunkSize) buf := make([]byte, curChunkSize)
n, err := disk.ReadFile(volume, path, block*curChunkSize, buf) // Note that for the offset calculation we have to use chunkSize and not
// curChunkSize. If we use curChunkSize for offset calculation then it
// can result in wrong offset for the last block.
n, err := disk.ReadFile(volume, path, block*chunkSize, buf)
if err != nil { if err != nil {
// So that we don't read from this disk for the next block.
orderedDisks[index] = nil orderedDisks[index] = nil
return return
} }
@ -110,7 +144,7 @@ func erasureReadFile(writer io.Writer, disks []StorageAPI, volume string, path s
} }
wg.Wait() wg.Wait()
// Counter to keep success data blocks. // Count number of data and parity blocks that were read.
var successDataBlocksCount = 0 var successDataBlocksCount = 0
var successParityBlocksCount = 0 var successParityBlocksCount = 0
for bufidx, buf := range enBlocks { for bufidx, buf := range enBlocks {
@ -125,50 +159,63 @@ func erasureReadFile(writer io.Writer, disks []StorageAPI, volume string, path s
} }
if successDataBlocksCount < eInfo.DataBlocks { if successDataBlocksCount < eInfo.DataBlocks {
// If we don't have DataBlocks number of data blocks we will have to read enough
// parity blocks such that we have DataBlocks+1 number for blocks for reedsolomon.Reconstruct()
for ; index < len(orderedDisks); index++ { for ; index < len(orderedDisks); index++ {
if (successDataBlocksCount + successParityBlocksCount) == (eInfo.DataBlocks + 1) { if (successDataBlocksCount + successParityBlocksCount) == (eInfo.DataBlocks + 1) {
// We have DataBlocks+1 blocks, enough for reedsolomon.Reconstruct()
break break
} }
ok := bitrotVerify(index)
if !ok {
// Mark nil so that we don't read from this disk for the next block.
orderedDisks[index] = nil
continue
}
buf := make([]byte, curChunkSize) buf := make([]byte, curChunkSize)
n, err := orderedDisks[index].ReadFile(volume, path, block*curChunkSize, buf) n, err := orderedDisks[index].ReadFile(volume, path, block*chunkSize, buf)
if err != nil { if err != nil {
// Mark nil so that we don't read from this disk for the next block.
orderedDisks[index] = nil orderedDisks[index] = nil
continue continue
} }
successParityBlocksCount++ successParityBlocksCount++
enBlocks[index] = buf[:n] enBlocks[index] = buf[:n]
} }
// Reconstruct the missing data blocks.
err := decodeData(enBlocks, eInfo.DataBlocks, eInfo.ParityBlocks) err := decodeData(enBlocks, eInfo.DataBlocks, eInfo.ParityBlocks)
if err != nil { if err != nil {
return bytesWritten, err return bytesWritten, err
} }
} }
// Get data blocks from encoded blocks. // enBlocks data can have 0-padding hence we need to figure the exact number
dataBlocks, err := getDataBlocks(enBlocks, eInfo.DataBlocks, min(eInfo.BlockSize, totalLength-offset+bytesWritten)) // of bytes we want to read from enBlocks.
blockSize := eInfo.BlockSize
if block == endBlock && totalLength%eInfo.BlockSize != 0 {
// For the last block, the block size can be less than BlockSize.
blockSize = totalLength % eInfo.BlockSize
}
data, err := getDataBlocks(enBlocks, eInfo.DataBlocks, int(blockSize))
if err != nil { if err != nil {
return bytesWritten, err return bytesWritten, err
} }
// Keep required bytes into buf.
buf := dataBlocks
// If this is start block, skip unwanted bytes. // If this is start block, skip unwanted bytes.
if block == startBlock { if block == startBlock {
buf = buf[bytesToSkip:] data = data[bytesToSkip:]
} }
if len(buf) > int(length-bytesWritten) { if len(data) > int(length-bytesWritten) {
buf = buf[:length-bytesWritten] // We should not send more data than what was requested.
data = data[:length-bytesWritten]
} }
// Copy data blocks. _, err = writer.Write(data)
var n int64
n, err = io.Copy(writer, bytes.NewReader(buf))
bytesWritten += int64(n)
if err != nil { if err != nil {
return bytesWritten, err return bytesWritten, err
} }
bytesWritten += int64(len(data))
} }
return bytesWritten, nil return bytesWritten, nil
@ -210,23 +257,18 @@ func toDiskIndex(blockIdx int, distribution []int) int {
// isValidBlock - calculates the checksum hash for the block and // isValidBlock - calculates the checksum hash for the block and
// validates if its correct returns true for valid cases, false otherwise. // validates if its correct returns true for valid cases, false otherwise.
func isValidBlock(disks []StorageAPI, volume, path string, diskIndex int, blockCheckSums []checkSumInfo) (ok bool) { func isValidBlock(disk StorageAPI, volume, path string, blockCheckSum checkSumInfo) (ok bool) {
ok = false ok = false
// Unknown block index requested, treat it as error. if disk == nil {
if diskIndex == -1 { return false
return ok
}
// Disk is not present, treat entire block to be non existent.
if disks[diskIndex] == nil {
return ok
} }
// Read everything for a given block and calculate hash. // Read everything for a given block and calculate hash.
hashWriter := newHash(blockCheckSums[diskIndex].Algorithm) hashWriter := newHash(blockCheckSum.Algorithm)
hashBytes, err := hashSum(disks[diskIndex], volume, path, hashWriter) hashBytes, err := hashSum(disk, volume, path, hashWriter)
if err != nil { if err != nil {
return ok return ok
} }
ok = hex.EncodeToString(hashBytes) == blockCheckSums[diskIndex].Hash ok = hex.EncodeToString(hashBytes) == blockCheckSum.Hash
return ok return ok
} }

@ -89,10 +89,11 @@ func getDataBlocks(enBlocks [][]byte, dataBlocks int, curBlockSize int) (data []
} }
// getBlockInfo - find start/end block and bytes to skip for given offset, length and block size. // getBlockInfo - find start/end block and bytes to skip for given offset, length and block size.
func getBlockInfo(offset, blockSize int64) (startBlock, bytesToSkip int64) { func getBlockInfo(offset, length, blockSize int64) (startBlock, endBlock, bytesToSkip int64) {
// Calculate start block for given offset and how many bytes to skip to get the offset. // Calculate start block for given offset and how many bytes to skip to get the offset.
startBlock = offset / blockSize startBlock = offset / blockSize
bytesToSkip = offset % blockSize bytesToSkip = offset % blockSize
endBlock = length / blockSize
return return
} }

@ -97,7 +97,9 @@ func (xl xlObjects) GetObject(bucket, object string, startOffset int64, length i
// Save the current part name and size. // Save the current part name and size.
partName := xlMeta.Parts[partIndex].Name partName := xlMeta.Parts[partIndex].Name
partSize := xlMeta.Parts[partIndex].Size partSize := xlMeta.Parts[partIndex].Size
readSize := partSize - partOffset readSize := partSize - partOffset
// readSize should be adjusted so that we don't write more data than what was requested.
if readSize > (length - totalBytesRead) { if readSize > (length - totalBytesRead) {
readSize = length - totalBytesRead readSize = length - totalBytesRead
} }
@ -110,7 +112,8 @@ func (xl xlObjects) GetObject(bucket, object string, startOffset int64, length i
totalBytesRead += n totalBytesRead += n
// Reset part offset to 0 to read rest of the part from the beginning. // partOffset will be valid only for the first part, hence reset it to 0 for
// the remaining parts.
partOffset = 0 partOffset = 0
} // End of read all parts loop. } // End of read all parts loop.

Loading…
Cancel
Save