You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
296 lines
9.8 KiB
296 lines
9.8 KiB
/*
|
|
* Minio Cloud Storage, (C) 2016 Minio, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
package main
|
|
|
|
import (
|
|
"encoding/hex"
|
|
"errors"
|
|
"io"
|
|
"sync"
|
|
|
|
"github.com/klauspost/reedsolomon"
|
|
)
|
|
|
|
// erasureReadFile - read bytes from erasure coded files and writes to given writer.
|
|
// Erasure coded files are read block by block as per given erasureInfo and data chunks
|
|
// are decoded into a data block. Data block is trimmed for given offset and length,
|
|
// then written to given writer. This function also supports bit-rot detection by
|
|
// verifying checksum of individual block's checksum.
|
|
func erasureReadFile(writer io.Writer, disks []StorageAPI, volume string, path string, partName string, eInfos []erasureInfo, offset int64, length int64, totalLength int64) (int64, error) {
|
|
// Pick one erasure info.
|
|
eInfo := pickValidErasureInfo(eInfos)
|
|
|
|
// Gather previously calculated block checksums.
|
|
blockCheckSums := metaPartBlockChecksums(disks, eInfos, partName)
|
|
orderedBlockCheckSums := make([]checkSumInfo, len(disks))
|
|
|
|
// []orderedDisks will have first eInfo.DataBlocks disks as data disks and rest will be parity.
|
|
orderedDisks := make([]StorageAPI, len(disks))
|
|
for index := range disks {
|
|
blockIndex := eInfo.Distribution[index]
|
|
orderedDisks[blockIndex-1] = disks[index]
|
|
orderedBlockCheckSums[blockIndex-1] = blockCheckSums[index]
|
|
}
|
|
|
|
// bitrotVerify verifies if the file on a particular disk does not have bitrot by verifying the hash of
|
|
// the contents of the file.
|
|
bitrotVerify := func() func(diskIndex int) bool {
|
|
verified := make([]bool, len(orderedDisks))
|
|
// Return closure so that we have reference to []verified and not recalculate the hash on it
|
|
// everytime the function is called for the same disk.
|
|
return func(diskIndex int) bool {
|
|
if verified[diskIndex] {
|
|
return true
|
|
}
|
|
isValid := isValidBlock(orderedDisks[diskIndex], volume, path, orderedBlockCheckSums[diskIndex])
|
|
verified[diskIndex] = isValid
|
|
return isValid
|
|
}
|
|
}()
|
|
|
|
// Total bytes written to writer
|
|
bytesWritten := int64(0)
|
|
|
|
// chunkSize is roughly BlockSize/DataBlocks.
|
|
// chunkSize is calculated such that chunkSize*DataBlocks accommodates BlockSize bytes.
|
|
// So chunkSize*DataBlocks can be slightly larger than BlockSize if BlockSize is not divisible by
|
|
// DataBlocks. The extra space will have 0-padding.
|
|
chunkSize := getEncodedBlockLen(eInfo.BlockSize, eInfo.DataBlocks)
|
|
|
|
startBlock, endBlock, bytesToSkip := getBlockInfo(offset, totalLength, eInfo.BlockSize)
|
|
|
|
// For each block, read chunk from each disk. If we are able to read all the data disks then we don't
|
|
// need to read parity disks. If one of the data disk is missing we need to read DataBlocks+1 number
|
|
// of disks. Once read, we Reconstruct() missing data if needed and write it to the given writer.
|
|
for block := startBlock; bytesWritten < length; block++ {
|
|
// curChunkSize will be chunkSize except for the last block because the size of the last block
|
|
// can be less than BlockSize.
|
|
curChunkSize := chunkSize
|
|
if block == endBlock && (totalLength%eInfo.BlockSize != 0) {
|
|
// If this is the last block and size of the block is < BlockSize.
|
|
curChunkSize = getEncodedBlockLen(totalLength%eInfo.BlockSize, eInfo.DataBlocks)
|
|
}
|
|
|
|
// Each element of enBlocks holds curChunkSize'd amount of data read from its corresponding disk.
|
|
enBlocks := make([][]byte, len(disks))
|
|
|
|
// Figure out the number of disks that are needed for the read.
|
|
// We will need DataBlocks number of disks if all the data disks are up.
|
|
// We will need DataBlocks+1 number of disks even if one of the data disks is down.
|
|
diskCount := 0
|
|
// Count the number of data disks that are up.
|
|
for _, disk := range orderedDisks[:eInfo.DataBlocks] {
|
|
if disk == nil {
|
|
continue
|
|
}
|
|
diskCount++
|
|
}
|
|
|
|
if diskCount < eInfo.DataBlocks {
|
|
// Not enough data disks up, so we need DataBlocks+1 number of disks for reed-solomon Reconstruct()
|
|
diskCount = eInfo.DataBlocks + 1
|
|
}
|
|
|
|
wg := &sync.WaitGroup{}
|
|
|
|
// current disk index from which to read, this will be used later in case one of the parallel reads fails.
|
|
index := 0
|
|
// Read from the disks in parallel.
|
|
for _, disk := range orderedDisks {
|
|
if disk == nil {
|
|
index++
|
|
continue
|
|
}
|
|
wg.Add(1)
|
|
go func(index int, disk StorageAPI) {
|
|
defer wg.Done()
|
|
ok := bitrotVerify(index)
|
|
if !ok {
|
|
// So that we don't read from this disk for the next block.
|
|
orderedDisks[index] = nil
|
|
return
|
|
}
|
|
buf := make([]byte, curChunkSize)
|
|
// Note that for the offset calculation we have to use chunkSize and not
|
|
// curChunkSize. If we use curChunkSize for offset calculation then it
|
|
// can result in wrong offset for the last block.
|
|
n, err := disk.ReadFile(volume, path, block*chunkSize, buf)
|
|
if err != nil {
|
|
// So that we don't read from this disk for the next block.
|
|
orderedDisks[index] = nil
|
|
return
|
|
}
|
|
enBlocks[index] = buf[:n]
|
|
}(index, disk)
|
|
index++
|
|
diskCount--
|
|
if diskCount == 0 {
|
|
break
|
|
}
|
|
}
|
|
wg.Wait()
|
|
|
|
// Count number of data and parity blocks that were read.
|
|
var successDataBlocksCount = 0
|
|
var successParityBlocksCount = 0
|
|
for bufidx, buf := range enBlocks {
|
|
if buf == nil {
|
|
continue
|
|
}
|
|
if bufidx < eInfo.DataBlocks {
|
|
successDataBlocksCount++
|
|
continue
|
|
}
|
|
successParityBlocksCount++
|
|
}
|
|
|
|
if successDataBlocksCount < eInfo.DataBlocks {
|
|
// If we don't have DataBlocks number of data blocks we will have to read enough
|
|
// parity blocks such that we have DataBlocks+1 number for blocks for reedsolomon.Reconstruct()
|
|
for ; index < len(orderedDisks); index++ {
|
|
if (successDataBlocksCount + successParityBlocksCount) == (eInfo.DataBlocks + 1) {
|
|
// We have DataBlocks+1 blocks, enough for reedsolomon.Reconstruct()
|
|
break
|
|
}
|
|
ok := bitrotVerify(index)
|
|
if !ok {
|
|
// Mark nil so that we don't read from this disk for the next block.
|
|
orderedDisks[index] = nil
|
|
continue
|
|
}
|
|
buf := make([]byte, curChunkSize)
|
|
n, err := orderedDisks[index].ReadFile(volume, path, block*chunkSize, buf)
|
|
if err != nil {
|
|
// Mark nil so that we don't read from this disk for the next block.
|
|
orderedDisks[index] = nil
|
|
continue
|
|
}
|
|
successParityBlocksCount++
|
|
enBlocks[index] = buf[:n]
|
|
}
|
|
// Reconstruct the missing data blocks.
|
|
err := decodeData(enBlocks, eInfo.DataBlocks, eInfo.ParityBlocks)
|
|
if err != nil {
|
|
return bytesWritten, err
|
|
}
|
|
}
|
|
|
|
// enBlocks data can have 0-padding hence we need to figure the exact number
|
|
// of bytes we want to read from enBlocks.
|
|
blockSize := eInfo.BlockSize
|
|
if block == endBlock && totalLength%eInfo.BlockSize != 0 {
|
|
// For the last block, the block size can be less than BlockSize.
|
|
blockSize = totalLength % eInfo.BlockSize
|
|
}
|
|
data, err := getDataBlocks(enBlocks, eInfo.DataBlocks, int(blockSize))
|
|
if err != nil {
|
|
return bytesWritten, err
|
|
}
|
|
|
|
// If this is start block, skip unwanted bytes.
|
|
if block == startBlock {
|
|
data = data[bytesToSkip:]
|
|
}
|
|
|
|
if len(data) > int(length-bytesWritten) {
|
|
// We should not send more data than what was requested.
|
|
data = data[:length-bytesWritten]
|
|
}
|
|
|
|
_, err = writer.Write(data)
|
|
if err != nil {
|
|
return bytesWritten, err
|
|
}
|
|
bytesWritten += int64(len(data))
|
|
}
|
|
|
|
return bytesWritten, nil
|
|
}
|
|
|
|
// PartObjectChecksum - returns the checksum for the part name from the checksum slice.
|
|
func (e erasureInfo) PartObjectChecksum(partName string) checkSumInfo {
|
|
for _, checksum := range e.Checksum {
|
|
if checksum.Name == partName {
|
|
return checksum
|
|
}
|
|
}
|
|
return checkSumInfo{}
|
|
}
|
|
|
|
// xlMetaPartBlockChecksums - get block checksums for a given part.
|
|
func metaPartBlockChecksums(disks []StorageAPI, eInfos []erasureInfo, partName string) (blockCheckSums []checkSumInfo) {
|
|
for index := range disks {
|
|
if eInfos[index].IsValid() {
|
|
// Save the read checksums for a given part.
|
|
blockCheckSums = append(blockCheckSums, eInfos[index].PartObjectChecksum(partName))
|
|
} else {
|
|
blockCheckSums = append(blockCheckSums, checkSumInfo{})
|
|
}
|
|
}
|
|
return blockCheckSums
|
|
}
|
|
|
|
// Takes block index and block distribution to get the disk index.
|
|
func toDiskIndex(blockIdx int, distribution []int) int {
|
|
// Find out the right disk index for the input block index.
|
|
for index, blockIndex := range distribution {
|
|
if blockIndex-1 == blockIdx {
|
|
return index
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// isValidBlock - calculates the checksum hash for the block and
|
|
// validates if its correct returns true for valid cases, false otherwise.
|
|
func isValidBlock(disk StorageAPI, volume, path string, blockCheckSum checkSumInfo) (ok bool) {
|
|
ok = false
|
|
if disk == nil {
|
|
return false
|
|
}
|
|
// Read everything for a given block and calculate hash.
|
|
hashWriter := newHash(blockCheckSum.Algorithm)
|
|
hashBytes, err := hashSum(disk, volume, path, hashWriter)
|
|
if err != nil {
|
|
return ok
|
|
}
|
|
ok = hex.EncodeToString(hashBytes) == blockCheckSum.Hash
|
|
return ok
|
|
}
|
|
|
|
// decodeData - decode encoded blocks.
|
|
func decodeData(enBlocks [][]byte, dataBlocks, parityBlocks int) error {
|
|
rs, err := reedsolomon.New(dataBlocks, parityBlocks)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
err = rs.Reconstruct(enBlocks)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
// Verify reconstructed blocks (parity).
|
|
ok, err := rs.Verify(enBlocks)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if !ok {
|
|
// Blocks cannot be reconstructed, corrupted data.
|
|
err = errors.New("Verification failed after reconstruction, data likely corrupted.")
|
|
return err
|
|
}
|
|
return nil
|
|
}
|
|
|