|
|
|
@ -17,10 +17,10 @@ |
|
|
|
|
package main |
|
|
|
|
|
|
|
|
|
import ( |
|
|
|
|
"bytes" |
|
|
|
|
"encoding/hex" |
|
|
|
|
"errors" |
|
|
|
|
"io" |
|
|
|
|
"sync" |
|
|
|
|
|
|
|
|
|
"github.com/klauspost/reedsolomon" |
|
|
|
|
) |
|
|
|
@ -30,114 +30,191 @@ import ( |
|
|
|
|
// are decoded into a data block. Data block is trimmed for given offset and length,
|
|
|
|
|
// then written to given writer. This function also supports bit-rot detection by
|
|
|
|
|
// verifying checksum of individual block's checksum.
|
|
|
|
|
func erasureReadFile(writer io.Writer, disks []StorageAPI, volume string, path string, partName string, eInfos []erasureInfo, offset int64, length int64) (int64, error) { |
|
|
|
|
// Total bytes written to writer
|
|
|
|
|
bytesWritten := int64(0) |
|
|
|
|
func erasureReadFile(writer io.Writer, disks []StorageAPI, volume string, path string, partName string, eInfos []erasureInfo, offset int64, length int64, totalLength int64) (int64, error) { |
|
|
|
|
// Pick one erasure info.
|
|
|
|
|
eInfo := pickValidErasureInfo(eInfos) |
|
|
|
|
|
|
|
|
|
// Gather previously calculated block checksums.
|
|
|
|
|
blockCheckSums := metaPartBlockChecksums(disks, eInfos, partName) |
|
|
|
|
orderedBlockCheckSums := make([]checkSumInfo, len(disks)) |
|
|
|
|
|
|
|
|
|
// Pick one erasure info.
|
|
|
|
|
eInfo := pickValidErasureInfo(eInfos) |
|
|
|
|
|
|
|
|
|
// Get block info for given offset, length and block size.
|
|
|
|
|
startBlock, bytesToSkip, endBlock := getBlockInfo(offset, length, eInfo.BlockSize) |
|
|
|
|
// []orderedDisks will have first eInfo.DataBlocks disks as data disks and rest will be parity.
|
|
|
|
|
orderedDisks := make([]StorageAPI, len(disks)) |
|
|
|
|
for index := range disks { |
|
|
|
|
blockIndex := eInfo.Distribution[index] |
|
|
|
|
orderedDisks[blockIndex-1] = disks[index] |
|
|
|
|
orderedBlockCheckSums[blockIndex-1] = blockCheckSums[index] |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Data chunk size on each block.
|
|
|
|
|
chunkSize := eInfo.BlockSize / int64(eInfo.DataBlocks) |
|
|
|
|
// bitrotVerify verifies if the file on a particular disk does not have bitrot by verifying the hash of
|
|
|
|
|
// the contents of the file.
|
|
|
|
|
bitrotVerify := func() func(diskIndex int) bool { |
|
|
|
|
verified := make([]bool, len(orderedDisks)) |
|
|
|
|
// Return closure so that we have reference to []verified and not recalculate the hash on it
|
|
|
|
|
// everytime the function is called for the same disk.
|
|
|
|
|
return func(diskIndex int) bool { |
|
|
|
|
if verified[diskIndex] { |
|
|
|
|
return true |
|
|
|
|
} |
|
|
|
|
isValid := isValidBlock(orderedDisks[diskIndex], volume, path, orderedBlockCheckSums[diskIndex]) |
|
|
|
|
verified[diskIndex] = isValid |
|
|
|
|
return isValid |
|
|
|
|
} |
|
|
|
|
}() |
|
|
|
|
|
|
|
|
|
for block := startBlock; block <= endBlock; block++ { |
|
|
|
|
// Allocate encoded blocks up to storage disks.
|
|
|
|
|
enBlocks := make([][]byte, len(disks)) |
|
|
|
|
// Total bytes written to writer
|
|
|
|
|
bytesWritten := int64(0) |
|
|
|
|
|
|
|
|
|
// Counter to keep success data blocks.
|
|
|
|
|
var successDataBlocksCount = 0 |
|
|
|
|
var noReconstruct bool // Set for no reconstruction.
|
|
|
|
|
// chunkSize is roughly BlockSize/DataBlocks.
|
|
|
|
|
// chunkSize is calculated such that chunkSize*DataBlocks accommodates BlockSize bytes.
|
|
|
|
|
// So chunkSize*DataBlocks can be slightly larger than BlockSize if BlockSize is not divisible by
|
|
|
|
|
// DataBlocks. The extra space will have 0-padding.
|
|
|
|
|
chunkSize := getEncodedBlockLen(eInfo.BlockSize, eInfo.DataBlocks) |
|
|
|
|
|
|
|
|
|
// Keep how many bytes are read for this block.
|
|
|
|
|
// In most cases, last block in the file is shorter than chunkSize
|
|
|
|
|
lastReadSize := int64(0) |
|
|
|
|
startBlock, endBlock, bytesToSkip := getBlockInfo(offset, totalLength, eInfo.BlockSize) |
|
|
|
|
|
|
|
|
|
// Read from all the disks.
|
|
|
|
|
for index, disk := range disks { |
|
|
|
|
blockIndex := eInfo.Distribution[index] - 1 |
|
|
|
|
if !isValidBlock(disks, volume, path, toDiskIndex(blockIndex, eInfo.Distribution), blockCheckSums) { |
|
|
|
|
continue |
|
|
|
|
// For each block, read chunk from each disk. If we are able to read all the data disks then we don't
|
|
|
|
|
// need to read parity disks. If one of the data disk is missing we need to read DataBlocks+1 number
|
|
|
|
|
// of disks. Once read, we Reconstruct() missing data if needed and write it to the given writer.
|
|
|
|
|
for block := startBlock; bytesWritten < length; block++ { |
|
|
|
|
// curChunkSize will be chunkSize except for the last block because the size of the last block
|
|
|
|
|
// can be less than BlockSize.
|
|
|
|
|
curChunkSize := chunkSize |
|
|
|
|
if block == endBlock && (totalLength%eInfo.BlockSize != 0) { |
|
|
|
|
// If this is the last block and size of the block is < BlockSize.
|
|
|
|
|
curChunkSize = getEncodedBlockLen(totalLength%eInfo.BlockSize, eInfo.DataBlocks) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Each element of enBlocks holds curChunkSize'd amount of data read from its corresponding disk.
|
|
|
|
|
enBlocks := make([][]byte, len(disks)) |
|
|
|
|
|
|
|
|
|
// Figure out the number of disks that are needed for the read.
|
|
|
|
|
// We will need DataBlocks number of disks if all the data disks are up.
|
|
|
|
|
// We will need DataBlocks+1 number of disks even if one of the data disks is down.
|
|
|
|
|
diskCount := 0 |
|
|
|
|
// Count the number of data disks that are up.
|
|
|
|
|
for _, disk := range orderedDisks[:eInfo.DataBlocks] { |
|
|
|
|
if disk == nil { |
|
|
|
|
continue |
|
|
|
|
} |
|
|
|
|
diskCount++ |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Initialize chunk slice and fill the data from each parts.
|
|
|
|
|
enBlocks[blockIndex] = make([]byte, chunkSize) |
|
|
|
|
if diskCount < eInfo.DataBlocks { |
|
|
|
|
// Not enough data disks up, so we need DataBlocks+1 number of disks for reed-solomon Reconstruct()
|
|
|
|
|
diskCount = eInfo.DataBlocks + 1 |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
wg := &sync.WaitGroup{} |
|
|
|
|
|
|
|
|
|
// Read the necessary blocks.
|
|
|
|
|
n, err := disk.ReadFile(volume, path, block*chunkSize, enBlocks[blockIndex]) |
|
|
|
|
// current disk index from which to read, this will be used later in case one of the parallel reads fails.
|
|
|
|
|
index := 0 |
|
|
|
|
// Read from the disks in parallel.
|
|
|
|
|
for _, disk := range orderedDisks { |
|
|
|
|
if disk == nil { |
|
|
|
|
index++ |
|
|
|
|
continue |
|
|
|
|
} |
|
|
|
|
wg.Add(1) |
|
|
|
|
go func(index int, disk StorageAPI) { |
|
|
|
|
defer wg.Done() |
|
|
|
|
ok := bitrotVerify(index) |
|
|
|
|
if !ok { |
|
|
|
|
// So that we don't read from this disk for the next block.
|
|
|
|
|
orderedDisks[index] = nil |
|
|
|
|
return |
|
|
|
|
} |
|
|
|
|
buf := make([]byte, curChunkSize) |
|
|
|
|
// Note that for the offset calculation we have to use chunkSize and not
|
|
|
|
|
// curChunkSize. If we use curChunkSize for offset calculation then it
|
|
|
|
|
// can result in wrong offset for the last block.
|
|
|
|
|
n, err := disk.ReadFile(volume, path, block*chunkSize, buf) |
|
|
|
|
if err != nil { |
|
|
|
|
enBlocks[blockIndex] = nil |
|
|
|
|
} else if n < chunkSize { |
|
|
|
|
// As the data we got is smaller than chunk size, keep only required chunk slice
|
|
|
|
|
enBlocks[blockIndex] = append([]byte{}, enBlocks[blockIndex][:n]...) |
|
|
|
|
// So that we don't read from this disk for the next block.
|
|
|
|
|
orderedDisks[index] = nil |
|
|
|
|
return |
|
|
|
|
} |
|
|
|
|
enBlocks[index] = buf[:n] |
|
|
|
|
}(index, disk) |
|
|
|
|
index++ |
|
|
|
|
diskCount-- |
|
|
|
|
if diskCount == 0 { |
|
|
|
|
break |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Remember bytes read at first time.
|
|
|
|
|
if lastReadSize == 0 { |
|
|
|
|
lastReadSize = n |
|
|
|
|
} |
|
|
|
|
wg.Wait() |
|
|
|
|
|
|
|
|
|
// If bytes read is not equal to bytes read lastly, treat it as corrupted chunk.
|
|
|
|
|
if n != lastReadSize { |
|
|
|
|
return bytesWritten, errXLDataCorrupt |
|
|
|
|
// Count number of data and parity blocks that were read.
|
|
|
|
|
var successDataBlocksCount = 0 |
|
|
|
|
var successParityBlocksCount = 0 |
|
|
|
|
for bufidx, buf := range enBlocks { |
|
|
|
|
if buf == nil { |
|
|
|
|
continue |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Verify if we have successfully read all the data blocks.
|
|
|
|
|
if blockIndex < eInfo.DataBlocks && enBlocks[blockIndex] != nil { |
|
|
|
|
if bufidx < eInfo.DataBlocks { |
|
|
|
|
successDataBlocksCount++ |
|
|
|
|
// Set when we have all the data blocks and no
|
|
|
|
|
// reconstruction is needed, so that we can avoid
|
|
|
|
|
// erasure reconstruction.
|
|
|
|
|
noReconstruct = successDataBlocksCount == eInfo.DataBlocks |
|
|
|
|
if noReconstruct { |
|
|
|
|
// Break out we have read all the data blocks.
|
|
|
|
|
continue |
|
|
|
|
} |
|
|
|
|
successParityBlocksCount++ |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if successDataBlocksCount < eInfo.DataBlocks { |
|
|
|
|
// If we don't have DataBlocks number of data blocks we will have to read enough
|
|
|
|
|
// parity blocks such that we have DataBlocks+1 number for blocks for reedsolomon.Reconstruct()
|
|
|
|
|
for ; index < len(orderedDisks); index++ { |
|
|
|
|
if (successDataBlocksCount + successParityBlocksCount) == (eInfo.DataBlocks + 1) { |
|
|
|
|
// We have DataBlocks+1 blocks, enough for reedsolomon.Reconstruct()
|
|
|
|
|
break |
|
|
|
|
} |
|
|
|
|
ok := bitrotVerify(index) |
|
|
|
|
if !ok { |
|
|
|
|
// Mark nil so that we don't read from this disk for the next block.
|
|
|
|
|
orderedDisks[index] = nil |
|
|
|
|
continue |
|
|
|
|
} |
|
|
|
|
buf := make([]byte, curChunkSize) |
|
|
|
|
n, err := orderedDisks[index].ReadFile(volume, path, block*chunkSize, buf) |
|
|
|
|
if err != nil { |
|
|
|
|
// Mark nil so that we don't read from this disk for the next block.
|
|
|
|
|
orderedDisks[index] = nil |
|
|
|
|
continue |
|
|
|
|
} |
|
|
|
|
successParityBlocksCount++ |
|
|
|
|
enBlocks[index] = buf[:n] |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Verify if reconstruction is needed, proceed with reconstruction.
|
|
|
|
|
if !noReconstruct { |
|
|
|
|
// Reconstruct the missing data blocks.
|
|
|
|
|
err := decodeData(enBlocks, eInfo.DataBlocks, eInfo.ParityBlocks) |
|
|
|
|
if err != nil { |
|
|
|
|
return bytesWritten, err |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Get data blocks from encoded blocks.
|
|
|
|
|
dataBlocks, err := getDataBlocks(enBlocks, eInfo.DataBlocks, int(lastReadSize)*eInfo.DataBlocks) |
|
|
|
|
if err != nil { |
|
|
|
|
return bytesWritten, err |
|
|
|
|
var outSize, outOffset int64 |
|
|
|
|
// enBlocks data can have 0-padding hence we need to figure the exact number
|
|
|
|
|
// of bytes we want to read from enBlocks.
|
|
|
|
|
blockSize := eInfo.BlockSize |
|
|
|
|
if block == endBlock && totalLength%eInfo.BlockSize != 0 { |
|
|
|
|
// For the last block, the block size can be less than BlockSize.
|
|
|
|
|
blockSize = totalLength % eInfo.BlockSize |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Keep required bytes into buf.
|
|
|
|
|
buf := dataBlocks |
|
|
|
|
|
|
|
|
|
// If this is start block, skip unwanted bytes.
|
|
|
|
|
if block == startBlock { |
|
|
|
|
buf = append([]byte{}, dataBlocks[bytesToSkip:]...) |
|
|
|
|
outOffset = bytesToSkip |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// If this is end block, retain only required bytes.
|
|
|
|
|
if block == endBlock { |
|
|
|
|
buf = append([]byte{}, buf[:length-bytesWritten]...) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Copy data blocks.
|
|
|
|
|
var n int64 |
|
|
|
|
n, err = io.Copy(writer, bytes.NewReader(buf)) |
|
|
|
|
bytesWritten += int64(n) |
|
|
|
|
// Total data to be read.
|
|
|
|
|
outSize = blockSize |
|
|
|
|
if length-bytesWritten < blockSize { |
|
|
|
|
// We should not send more data than what was requested.
|
|
|
|
|
outSize = length - bytesWritten |
|
|
|
|
} |
|
|
|
|
// Write data blocks.
|
|
|
|
|
n, err := writeDataBlocks(writer, enBlocks, eInfo.DataBlocks, outOffset, outSize) |
|
|
|
|
if err != nil { |
|
|
|
|
return bytesWritten, err |
|
|
|
|
} |
|
|
|
|
bytesWritten += n |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return bytesWritten, nil |
|
|
|
@ -179,23 +256,18 @@ func toDiskIndex(blockIdx int, distribution []int) int { |
|
|
|
|
|
|
|
|
|
// isValidBlock - calculates the checksum hash for the block and
|
|
|
|
|
// validates if its correct returns true for valid cases, false otherwise.
|
|
|
|
|
func isValidBlock(disks []StorageAPI, volume, path string, diskIndex int, blockCheckSums []checkSumInfo) (ok bool) { |
|
|
|
|
func isValidBlock(disk StorageAPI, volume, path string, blockCheckSum checkSumInfo) (ok bool) { |
|
|
|
|
ok = false |
|
|
|
|
// Unknown block index requested, treat it as error.
|
|
|
|
|
if diskIndex == -1 { |
|
|
|
|
return ok |
|
|
|
|
} |
|
|
|
|
// Disk is not present, treat entire block to be non existent.
|
|
|
|
|
if disks[diskIndex] == nil { |
|
|
|
|
return ok |
|
|
|
|
if disk == nil { |
|
|
|
|
return false |
|
|
|
|
} |
|
|
|
|
// Read everything for a given block and calculate hash.
|
|
|
|
|
hashWriter := newHash(blockCheckSums[diskIndex].Algorithm) |
|
|
|
|
hashBytes, err := hashSum(disks[diskIndex], volume, path, hashWriter) |
|
|
|
|
hashWriter := newHash(blockCheckSum.Algorithm) |
|
|
|
|
hashBytes, err := hashSum(disk, volume, path, hashWriter) |
|
|
|
|
if err != nil { |
|
|
|
|
return ok |
|
|
|
|
} |
|
|
|
|
ok = hex.EncodeToString(hashBytes) == blockCheckSums[diskIndex].Hash |
|
|
|
|
ok = hex.EncodeToString(hashBytes) == blockCheckSum.Hash |
|
|
|
|
return ok |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|