oseama: support creating single Seama entity

This will be needed to handle sysupgrade on NAND in a smart way. We'll
need to extract kernel our of provided Seama container, put in in a new
Seama entity and flash.

Signed-off-by: Rafał Miłecki <zajec5@gmail.com>

SVN-Revision: 48552
master
Rafał Miłecki 9 years ago
parent 6064710b90
commit e4e7f24920
  1. 2
      package/utils/oseama/src/Makefile
  2. 296
      package/utils/oseama/src/md5.c
  3. 45
      package/utils/oseama/src/md5.h
  4. 185
      package/utils/oseama/src/oseama.c

@ -1,7 +1,7 @@
all: oseama
oseama:
$(CC) $(CFLAGS) -o $@ oseama.c -Wall
$(CC) $(CFLAGS) -Wall oseama.c md5.c -o $@ $^
clean:
rm -f oseama

@ -0,0 +1,296 @@
/*
* This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
* MD5 Message-Digest Algorithm (RFC 1321).
*
* Homepage:
* http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
*
* Author:
* Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
*
* This software was written by Alexander Peslyak in 2001. No copyright is
* claimed, and the software is hereby placed in the public domain.
* In case this attempt to disclaim copyright and place the software in the
* public domain is deemed null and void, then the software is
* Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
* general public under the following terms:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted.
*
* There's ABSOLUTELY NO WARRANTY, express or implied.
*
* (This is a heavily cut-down "BSD license".)
*
* This differs from Colin Plumb's older public domain implementation in that
* no exactly 32-bit integer data type is required (any 32-bit or wider
* unsigned integer data type will do), there's no compile-time endianness
* configuration, and the function prototypes match OpenSSL's. No code from
* Colin Plumb's implementation has been reused; this comment merely compares
* the properties of the two independent implementations.
*
* The primary goals of this implementation are portability and ease of use.
* It is meant to be fast, but not as fast as possible. Some known
* optimizations are not included to reduce source code size and avoid
* compile-time configuration.
*/
#ifndef HAVE_OPENSSL
#include <string.h>
#include "md5.h"
/*
* The basic MD5 functions.
*
* F and G are optimized compared to their RFC 1321 definitions for
* architectures that lack an AND-NOT instruction, just like in Colin Plumb's
* implementation.
*/
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y))))
#define H(x, y, z) (((x) ^ (y)) ^ (z))
#define H2(x, y, z) ((x) ^ ((y) ^ (z)))
#define I(x, y, z) ((y) ^ ((x) | ~(z)))
/*
* The MD5 transformation for all four rounds.
*/
#define STEP(f, a, b, c, d, x, t, s) \
(a) += f((b), (c), (d)) + (x) + (t); \
(a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
(a) += (b);
/*
* SET reads 4 input bytes in little-endian byte order and stores them
* in a properly aligned word in host byte order.
*
* The check for little-endian architectures that tolerate unaligned
* memory accesses is just an optimization. Nothing will break if it
* doesn't work.
*/
#if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
#define SET(n) \
(*(MD5_u32plus *)&ptr[(n) * 4])
#define GET(n) \
SET(n)
#else
#define SET(n) \
(ctx->block[(n)] = \
(MD5_u32plus)ptr[(n) * 4] | \
((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \
((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \
((MD5_u32plus)ptr[(n) * 4 + 3] << 24))
#define GET(n) \
(ctx->block[(n)])
#endif
/*
* This processes one or more 64-byte data blocks, but does NOT update
* the bit counters. There are no alignment requirements.
*/
static const void *body(MD5_CTX *ctx, const void *data, unsigned long size)
{
const unsigned char *ptr;
MD5_u32plus a, b, c, d;
MD5_u32plus saved_a, saved_b, saved_c, saved_d;
ptr = (const unsigned char *)data;
a = ctx->a;
b = ctx->b;
c = ctx->c;
d = ctx->d;
do {
saved_a = a;
saved_b = b;
saved_c = c;
saved_d = d;
/* Round 1 */
STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7)
STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12)
STEP(F, c, d, a, b, SET(2), 0x242070db, 17)
STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22)
STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7)
STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12)
STEP(F, c, d, a, b, SET(6), 0xa8304613, 17)
STEP(F, b, c, d, a, SET(7), 0xfd469501, 22)
STEP(F, a, b, c, d, SET(8), 0x698098d8, 7)
STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12)
STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17)
STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22)
STEP(F, a, b, c, d, SET(12), 0x6b901122, 7)
STEP(F, d, a, b, c, SET(13), 0xfd987193, 12)
STEP(F, c, d, a, b, SET(14), 0xa679438e, 17)
STEP(F, b, c, d, a, SET(15), 0x49b40821, 22)
/* Round 2 */
STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5)
STEP(G, d, a, b, c, GET(6), 0xc040b340, 9)
STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14)
STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20)
STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5)
STEP(G, d, a, b, c, GET(10), 0x02441453, 9)
STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14)
STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20)
STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5)
STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9)
STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14)
STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20)
STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5)
STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9)
STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14)
STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20)
/* Round 3 */
STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4)
STEP(H2, d, a, b, c, GET(8), 0x8771f681, 11)
STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16)
STEP(H2, b, c, d, a, GET(14), 0xfde5380c, 23)
STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4)
STEP(H2, d, a, b, c, GET(4), 0x4bdecfa9, 11)
STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16)
STEP(H2, b, c, d, a, GET(10), 0xbebfbc70, 23)
STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4)
STEP(H2, d, a, b, c, GET(0), 0xeaa127fa, 11)
STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16)
STEP(H2, b, c, d, a, GET(6), 0x04881d05, 23)
STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4)
STEP(H2, d, a, b, c, GET(12), 0xe6db99e5, 11)
STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16)
STEP(H2, b, c, d, a, GET(2), 0xc4ac5665, 23)
/* Round 4 */
STEP(I, a, b, c, d, GET(0), 0xf4292244, 6)
STEP(I, d, a, b, c, GET(7), 0x432aff97, 10)
STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15)
STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21)
STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6)
STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10)
STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15)
STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21)
STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6)
STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10)
STEP(I, c, d, a, b, GET(6), 0xa3014314, 15)
STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21)
STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6)
STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10)
STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15)
STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21)
a += saved_a;
b += saved_b;
c += saved_c;
d += saved_d;
ptr += 64;
} while (size -= 64);
ctx->a = a;
ctx->b = b;
ctx->c = c;
ctx->d = d;
return ptr;
}
void MD5_Init(MD5_CTX *ctx)
{
ctx->a = 0x67452301;
ctx->b = 0xefcdab89;
ctx->c = 0x98badcfe;
ctx->d = 0x10325476;
ctx->lo = 0;
ctx->hi = 0;
}
void MD5_Update(MD5_CTX *ctx, const void *data, unsigned long size)
{
MD5_u32plus saved_lo;
unsigned long used, available;
saved_lo = ctx->lo;
if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
ctx->hi++;
ctx->hi += size >> 29;
used = saved_lo & 0x3f;
if (used) {
available = 64 - used;
if (size < available) {
memcpy(&ctx->buffer[used], data, size);
return;
}
memcpy(&ctx->buffer[used], data, available);
data = (const unsigned char *)data + available;
size -= available;
body(ctx, ctx->buffer, 64);
}
if (size >= 64) {
data = body(ctx, data, size & ~(unsigned long)0x3f);
size &= 0x3f;
}
memcpy(ctx->buffer, data, size);
}
void MD5_Final(unsigned char *result, MD5_CTX *ctx)
{
unsigned long used, available;
used = ctx->lo & 0x3f;
ctx->buffer[used++] = 0x80;
available = 64 - used;
if (available < 8) {
memset(&ctx->buffer[used], 0, available);
body(ctx, ctx->buffer, 64);
used = 0;
available = 64;
}
memset(&ctx->buffer[used], 0, available - 8);
ctx->lo <<= 3;
ctx->buffer[56] = ctx->lo;
ctx->buffer[57] = ctx->lo >> 8;
ctx->buffer[58] = ctx->lo >> 16;
ctx->buffer[59] = ctx->lo >> 24;
ctx->buffer[60] = ctx->hi;
ctx->buffer[61] = ctx->hi >> 8;
ctx->buffer[62] = ctx->hi >> 16;
ctx->buffer[63] = ctx->hi >> 24;
body(ctx, ctx->buffer, 64);
result[0] = ctx->a;
result[1] = ctx->a >> 8;
result[2] = ctx->a >> 16;
result[3] = ctx->a >> 24;
result[4] = ctx->b;
result[5] = ctx->b >> 8;
result[6] = ctx->b >> 16;
result[7] = ctx->b >> 24;
result[8] = ctx->c;
result[9] = ctx->c >> 8;
result[10] = ctx->c >> 16;
result[11] = ctx->c >> 24;
result[12] = ctx->d;
result[13] = ctx->d >> 8;
result[14] = ctx->d >> 16;
result[15] = ctx->d >> 24;
memset(ctx, 0, sizeof(*ctx));
}
#endif

@ -0,0 +1,45 @@
/*
* This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
* MD5 Message-Digest Algorithm (RFC 1321).
*
* Homepage:
* http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
*
* Author:
* Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
*
* This software was written by Alexander Peslyak in 2001. No copyright is
* claimed, and the software is hereby placed in the public domain.
* In case this attempt to disclaim copyright and place the software in the
* public domain is deemed null and void, then the software is
* Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
* general public under the following terms:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted.
*
* There's ABSOLUTELY NO WARRANTY, express or implied.
*
* See md5.c for more information.
*/
#ifdef HAVE_OPENSSL
#include <openssl/md5.h>
#elif !defined(_MD5_H)
#define _MD5_H
/* Any 32-bit or wider unsigned integer data type will do */
typedef unsigned int MD5_u32plus;
typedef struct {
MD5_u32plus lo, hi;
MD5_u32plus a, b, c, d;
unsigned char buffer[64];
MD5_u32plus block[16];
} MD5_CTX;
extern void MD5_Init(MD5_CTX *ctx);
extern void MD5_Update(MD5_CTX *ctx, const void *data, unsigned long size);
extern void MD5_Final(unsigned char *result, MD5_CTX *ctx);
#endif

@ -18,6 +18,8 @@
#include <string.h>
#include <unistd.h>
#include "md5.h"
#if !defined(__BYTE_ORDER)
#error "Unknown byte order"
#endif
@ -214,6 +216,181 @@ out:
return err;
}
/**************************************************
* Create
**************************************************/
static ssize_t oseama_entity_append_file(FILE *seama, const char *in_path) {
FILE *in;
size_t bytes;
ssize_t length = 0;
uint8_t buf[128];
in = fopen(in_path, "r");
if (!in) {
fprintf(stderr, "Couldn't open %s\n", in_path);
return -EACCES;
}
while ((bytes = fread(buf, 1, sizeof(buf), in)) > 0) {
if (fwrite(buf, 1, bytes, seama) != bytes) {
fprintf(stderr, "Couldn't write %zu B to %s\n", bytes, seama_path);
length = -EIO;
break;
}
length += bytes;
}
fclose(in);
return length;
}
static ssize_t oseama_entity_append_zeros(FILE *seama, size_t length) {
uint8_t *buf;
buf = malloc(length);
if (!buf)
return -ENOMEM;
memset(buf, 0, length);
if (fwrite(buf, 1, length, seama) != length) {
fprintf(stderr, "Couldn't write %zu B to %s\n", length, seama_path);
return -EIO;
}
return length;
}
static ssize_t oseama_entity_align(FILE *seama, size_t curr_offset, size_t alignment) {
if (curr_offset & (alignment - 1)) {
size_t length = alignment - (curr_offset % alignment);
return oseama_entity_append_zeros(seama, length);
}
return 0;
}
static int oseama_entity_write_hdr(FILE *seama, size_t metasize, size_t imagesize) {
struct seama_entity_header hdr = {};
uint8_t buf[128];
size_t length = imagesize;
size_t bytes;
MD5_CTX ctx;
fseek(seama, sizeof(hdr) + metasize, SEEK_SET);
MD5_Init(&ctx);
while ((bytes = fread(buf, 1, oseama_min(sizeof(buf), length), seama)) > 0) {
MD5_Update(&ctx, buf, bytes);
length -= bytes;
}
MD5_Final(hdr.md5, &ctx);
hdr.magic = cpu_to_be32(SEAMA_MAGIC);
hdr.metasize = cpu_to_be16(metasize);
hdr.imagesize = cpu_to_be32(imagesize);
fseek(seama, 0, SEEK_SET);
bytes = fwrite(&hdr, 1, sizeof(hdr), seama);
if (bytes != sizeof(hdr)) {
fprintf(stderr, "Couldn't write Seama entity header to %s\n", seama_path);
return -EIO;
}
return 0;
}
static int oseama_entity(int argc, char **argv) {
FILE *seama;
ssize_t sbytes;
size_t curr_offset = sizeof(struct seama_entity_header);
size_t metasize = 0, imagesize = 0;
int c;
int err = 0;
if (argc < 3) {
fprintf(stderr, "No Seama file passed\n");
err = -EINVAL;
goto out;
}
seama_path = argv[2];
seama = fopen(seama_path, "w+");
if (!seama) {
fprintf(stderr, "Couldn't open %s\n", seama_path);
err = -EACCES;
goto out;
}
fseek(seama, curr_offset, SEEK_SET);
optind = 3;
while ((c = getopt(argc, argv, "m:f:b:")) != -1) {
switch (c) {
case 'm':
sbytes = fwrite(optarg, 1, strlen(optarg) + 1, seama);
if (sbytes < 0) {
fprintf(stderr, "Failed to write meta %s\n", optarg);
} else {
curr_offset += sbytes;
metasize += sbytes;
}
sbytes = oseama_entity_align(seama, curr_offset, 4);
if (sbytes < 0) {
fprintf(stderr, "Failed to append zeros\n");
} else {
curr_offset += sbytes;
metasize += sbytes;
}
break;
case 'f':
case 'b':
break;
}
}
optind = 3;
while ((c = getopt(argc, argv, "m:f:b:")) != -1) {
switch (c) {
case 'm':
break;
case 'f':
sbytes = oseama_entity_append_file(seama, optarg);
if (sbytes < 0) {
fprintf(stderr, "Failed to append file %s\n", optarg);
} else {
curr_offset += sbytes;
imagesize += sbytes;
}
break;
case 'b':
sbytes = strtol(optarg, NULL, 0) - curr_offset;
if (sbytes < 0) {
fprintf(stderr, "Current Seama entity length is 0x%zx, can't pad it with zeros to 0x%lx\n", curr_offset, strtol(optarg, NULL, 0));
} else {
sbytes = oseama_entity_append_zeros(seama, sbytes);
if (sbytes < 0) {
fprintf(stderr, "Failed to append zeros\n");
} else {
curr_offset += sbytes;
imagesize += sbytes;
}
}
break;
}
if (err)
break;
}
oseama_entity_write_hdr(seama, metasize, imagesize);
fclose(seama);
out:
return err;
}
/**************************************************
* Start
**************************************************/
@ -224,12 +401,20 @@ static void usage() {
printf("Info about Seama seal (container):\n");
printf("\toseama info <file> [options]\n");
printf("\t-e\t\t\t\tprint info about specified entity only\n");
printf("\n");
printf("Create Seama entity:\n");
printf("\toseama entity <file> [options]\n");
printf("\t-m meta\t\t\t\tmeta into to put in header\n");
printf("\t-f file\t\t\t\tappend content from file\n");
printf("\t-b offset\t\t\tappend zeros till reaching absolute offset\n");
}
int main(int argc, char **argv) {
if (argc > 1) {
if (!strcmp(argv[1], "info"))
return oseama_info(argc, argv);
else if (!strcmp(argv[1], "entity"))
return oseama_entity(argc, argv);
}
usage();

Loading…
Cancel
Save