You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

208 lines
6.8 KiB

/*
*
* Copyright 2017 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package base
import (
"golang.org/x/net/context"
"google.golang.org/grpc/balancer"
"google.golang.org/grpc/connectivity"
"google.golang.org/grpc/grpclog"
"google.golang.org/grpc/resolver"
)
type baseBuilder struct {
name string
pickerBuilder PickerBuilder
}
func (bb *baseBuilder) Build(cc balancer.ClientConn, opt balancer.BuildOptions) balancer.Balancer {
return &baseBalancer{
cc: cc,
pickerBuilder: bb.pickerBuilder,
subConns: make(map[resolver.Address]balancer.SubConn),
scStates: make(map[balancer.SubConn]connectivity.State),
csEvltr: &connectivityStateEvaluator{},
// Initialize picker to a picker that always return
// ErrNoSubConnAvailable, because when state of a SubConn changes, we
// may call UpdateBalancerState with this picker.
picker: NewErrPicker(balancer.ErrNoSubConnAvailable),
}
}
func (bb *baseBuilder) Name() string {
return bb.name
}
type baseBalancer struct {
cc balancer.ClientConn
pickerBuilder PickerBuilder
csEvltr *connectivityStateEvaluator
state connectivity.State
subConns map[resolver.Address]balancer.SubConn
scStates map[balancer.SubConn]connectivity.State
picker balancer.Picker
}
func (b *baseBalancer) HandleResolvedAddrs(addrs []resolver.Address, err error) {
if err != nil {
grpclog.Infof("base.baseBalancer: HandleResolvedAddrs called with error %v", err)
return
}
grpclog.Infoln("base.baseBalancer: got new resolved addresses: ", addrs)
// addrsSet is the set converted from addrs, it's used for quick lookup of an address.
addrsSet := make(map[resolver.Address]struct{})
for _, a := range addrs {
addrsSet[a] = struct{}{}
if _, ok := b.subConns[a]; !ok {
// a is a new address (not existing in b.subConns).
sc, err := b.cc.NewSubConn([]resolver.Address{a}, balancer.NewSubConnOptions{})
if err != nil {
grpclog.Warningf("base.baseBalancer: failed to create new SubConn: %v", err)
continue
}
b.subConns[a] = sc
b.scStates[sc] = connectivity.Idle
sc.Connect()
}
}
for a, sc := range b.subConns {
// a was removed by resolver.
if _, ok := addrsSet[a]; !ok {
b.cc.RemoveSubConn(sc)
delete(b.subConns, a)
// Keep the state of this sc in b.scStates until sc's state becomes Shutdown.
// The entry will be deleted in HandleSubConnStateChange.
}
}
}
// regeneratePicker takes a snapshot of the balancer, and generates a picker
// from it. The picker is
// - errPicker with ErrTransientFailure if the balancer is in TransientFailure,
// - built by the pickerBuilder with all READY SubConns otherwise.
func (b *baseBalancer) regeneratePicker() {
if b.state == connectivity.TransientFailure {
b.picker = NewErrPicker(balancer.ErrTransientFailure)
return
}
readySCs := make(map[resolver.Address]balancer.SubConn)
// Filter out all ready SCs from full subConn map.
for addr, sc := range b.subConns {
if st, ok := b.scStates[sc]; ok && st == connectivity.Ready {
readySCs[addr] = sc
}
}
b.picker = b.pickerBuilder.Build(readySCs)
}
func (b *baseBalancer) HandleSubConnStateChange(sc balancer.SubConn, s connectivity.State) {
grpclog.Infof("base.baseBalancer: handle SubConn state change: %p, %v", sc, s)
oldS, ok := b.scStates[sc]
if !ok {
grpclog.Infof("base.baseBalancer: got state changes for an unknown SubConn: %p, %v", sc, s)
return
}
b.scStates[sc] = s
switch s {
case connectivity.Idle:
sc.Connect()
case connectivity.Shutdown:
// When an address was removed by resolver, b called RemoveSubConn but
// kept the sc's state in scStates. Remove state for this sc here.
delete(b.scStates, sc)
}
oldAggrState := b.state
b.state = b.csEvltr.recordTransition(oldS, s)
// Regenerate picker when one of the following happens:
// - this sc became ready from not-ready
// - this sc became not-ready from ready
// - the aggregated state of balancer became TransientFailure from non-TransientFailure
// - the aggregated state of balancer became non-TransientFailure from TransientFailure
if (s == connectivity.Ready) != (oldS == connectivity.Ready) ||
(b.state == connectivity.TransientFailure) != (oldAggrState == connectivity.TransientFailure) {
b.regeneratePicker()
}
b.cc.UpdateBalancerState(b.state, b.picker)
}
// Close is a nop because base balancer doesn't have internal state to clean up,
// and it doesn't need to call RemoveSubConn for the SubConns.
func (b *baseBalancer) Close() {
}
// NewErrPicker returns a picker that always returns err on Pick().
func NewErrPicker(err error) balancer.Picker {
return &errPicker{err: err}
}
type errPicker struct {
err error // Pick() always returns this err.
}
func (p *errPicker) Pick(ctx context.Context, opts balancer.PickOptions) (balancer.SubConn, func(balancer.DoneInfo), error) {
return nil, nil, p.err
}
// connectivityStateEvaluator gets updated by addrConns when their
// states transition, based on which it evaluates the state of
// ClientConn.
type connectivityStateEvaluator struct {
numReady uint64 // Number of addrConns in ready state.
numConnecting uint64 // Number of addrConns in connecting state.
numTransientFailure uint64 // Number of addrConns in transientFailure.
}
// recordTransition records state change happening in every subConn and based on
// that it evaluates what aggregated state should be.
// It can only transition between Ready, Connecting and TransientFailure. Other states,
// Idle and Shutdown are transitioned into by ClientConn; in the beginning of the connection
// before any subConn is created ClientConn is in idle state. In the end when ClientConn
// closes it is in Shutdown state.
//
// recordTransition should only be called synchronously from the same goroutine.
func (cse *connectivityStateEvaluator) recordTransition(oldState, newState connectivity.State) connectivity.State {
// Update counters.
for idx, state := range []connectivity.State{oldState, newState} {
updateVal := 2*uint64(idx) - 1 // -1 for oldState and +1 for new.
switch state {
case connectivity.Ready:
cse.numReady += updateVal
case connectivity.Connecting:
cse.numConnecting += updateVal
case connectivity.TransientFailure:
cse.numTransientFailure += updateVal
}
}
// Evaluate.
if cse.numReady > 0 {
return connectivity.Ready
}
if cse.numConnecting > 0 {
return connectivity.Connecting
}
return connectivity.TransientFailure
}