package humanize import ( "bytes" "math/big" "strconv" "strings" ) // Comma produces a string form of the given number in base 10 with // commas after every three orders of magnitude. // // e.g. Comma(834142) -> 834,142 func Comma(v int64) string { sign := "" if v < 0 { sign = "-" v = 0 - v } parts := []string{"", "", "", "", "", "", ""} j := len(parts) - 1 for v > 999 { parts[j] = strconv.FormatInt(v%1000, 10) switch len(parts[j]) { case 2: parts[j] = "0" + parts[j] case 1: parts[j] = "00" + parts[j] } v = v / 1000 j-- } parts[j] = strconv.Itoa(int(v)) return sign + strings.Join(parts[j:len(parts)], ",") } // Commaf produces a string form of the given number in base 10 with // commas after every three orders of magnitude. // // e.g. Comma(834142.32) -> 834,142.32 func Commaf(v float64) string { buf := &bytes.Buffer{} if v < 0 { buf.Write([]byte{'-'}) v = 0 - v } comma := []byte{','} parts := strings.Split(strconv.FormatFloat(v, 'f', -1, 64), ".") pos := 0 if len(parts[0])%3 != 0 { pos += len(parts[0]) % 3 buf.WriteString(parts[0][:pos]) buf.Write(comma) } for ; pos < len(parts[0]); pos += 3 { buf.WriteString(parts[0][pos : pos+3]) buf.Write(comma) } buf.Truncate(buf.Len() - 1) if len(parts) > 1 { buf.Write([]byte{'.'}) buf.WriteString(parts[1]) } return buf.String() } // BigComma produces a string form of the given big.Int in base 10 // with commas after every three orders of magnitude. func BigComma(b *big.Int) string { sign := "" if b.Sign() < 0 { sign = "-" b.Abs(b) } athousand := big.NewInt(1000) c := (&big.Int{}).Set(b) _, m := oom(c, athousand) parts := make([]string, m+1) j := len(parts) - 1 mod := &big.Int{} for b.Cmp(athousand) >= 0 { b.DivMod(b, athousand, mod) parts[j] = strconv.FormatInt(mod.Int64(), 10) switch len(parts[j]) { case 2: parts[j] = "0" + parts[j] case 1: parts[j] = "00" + parts[j] } j-- } parts[j] = strconv.Itoa(int(b.Int64())) return sign + strings.Join(parts[j:len(parts)], ",") }