/* * Minio Cloud Storage, (C) 2015 Minio, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package main import ( "crypto/hmac" "encoding/hex" "io" "regexp" "strings" "unicode/utf8" "github.com/minio/minio/pkg/crypto/sha256" ) /// /// Excerpts from @lsegal - https://github.com/aws/aws-sdk-js/issues/659#issuecomment-120477258 /// /// User-Agent: /// /// This is ignored from signing because signing this causes problems with generating pre-signed URLs /// (that are executed by other agents) or when customers pass requests through proxies, which may /// modify the user-agent. /// /// Content-Length: /// /// This is ignored from signing because generating a pre-signed URL should not provide a content-length /// constraint, specifically when vending a S3 pre-signed PUT URL. The corollary to this is that when /// sending regular requests (non-pre-signed), the signature contains a checksum of the body, which /// implicitly validates the payload length (since changing the number of bytes would change the checksum) /// and therefore this header is not valuable in the signature. /// /// Content-Type: /// /// Signing this header causes quite a number of problems in browser environments, where browsers /// like to modify and normalize the content-type header in different ways. There is more information /// on this in https://github.com/aws/aws-sdk-js/issues/244. Avoiding this field simplifies logic /// and reduces the possibility of future bugs /// /// Authorization: /// /// Is skipped for obvious reasons /// var ignoredHeaders = map[string]bool{ "Authorization": true, "Content-Type": true, "Content-Length": true, "User-Agent": true, } // sum256Reader calculate sha256 sum for an input read seeker func sum256Reader(reader io.ReadSeeker) ([]byte, error) { h := sha256.New() var err error start, _ := reader.Seek(0, 1) defer reader.Seek(start, 0) for err == nil { length := 0 byteBuffer := make([]byte, 1024*1024) length, err = reader.Read(byteBuffer) byteBuffer = byteBuffer[0:length] h.Write(byteBuffer) } if err != io.EOF { return nil, err } return h.Sum(nil), nil } // sum256 calculate sha256 sum for an input byte array func sum256(data []byte) []byte { hash := sha256.New() hash.Write(data) return hash.Sum(nil) } // sumHMAC calculate hmac between two input byte array func sumHMAC(key []byte, data []byte) []byte { hash := hmac.New(sha256.New, key) hash.Write(data) return hash.Sum(nil) } // getURLEncodedName encode the strings from UTF-8 byte representations to HTML hex escape sequences // // This is necessary since regular url.Parse() and url.Encode() functions do not support UTF-8 // non english characters cannot be parsed due to the nature in which url.Encode() is written // // This function on the other hand is a direct replacement for url.Encode() technique to support // pretty much every UTF-8 character. func getURLEncodedName(name string) string { // if object matches reserved string, no need to encode them reservedNames := regexp.MustCompile("^[a-zA-Z0-9-_.~/]+$") if reservedNames.MatchString(name) { return name } var encodedName string for _, s := range name { if 'A' <= s && s <= 'Z' || 'a' <= s && s <= 'z' || '0' <= s && s <= '9' { // §2.3 Unreserved characters (mark) encodedName = encodedName + string(s) continue } switch s { case '-', '_', '.', '~', '/': // §2.3 Unreserved characters (mark) encodedName = encodedName + string(s) continue default: len := utf8.RuneLen(s) if len < 0 { return name } u := make([]byte, len) utf8.EncodeRune(u, s) for _, r := range u { hex := hex.EncodeToString([]byte{r}) encodedName = encodedName + "%" + strings.ToUpper(hex) } } } return encodedName }