vendor: update reedsolomon package with new changes. (#2870)
- Cached inverse matrices for better reconstruct performance. - New error reconstruction required is returned, helpful in initiating healing.master
parent
1e5e213d24
commit
ed676667d0
@ -0,0 +1,160 @@ |
||||
/** |
||||
* A thread-safe tree which caches inverted matrices. |
||||
* |
||||
* Copyright 2016, Peter Collins |
||||
*/ |
||||
|
||||
package reedsolomon |
||||
|
||||
import ( |
||||
"errors" |
||||
"sync" |
||||
) |
||||
|
||||
// The tree uses a Reader-Writer mutex to make it thread-safe
|
||||
// when accessing cached matrices and inserting new ones.
|
||||
type inversionTree struct { |
||||
mutex *sync.RWMutex |
||||
root inversionNode |
||||
} |
||||
|
||||
type inversionNode struct { |
||||
matrix matrix |
||||
children []*inversionNode |
||||
} |
||||
|
||||
// newInversionTree initializes a tree for storing inverted matrices.
|
||||
// Note that the root node is the identity matrix as it implies
|
||||
// there were no errors with the original data.
|
||||
func newInversionTree(dataShards, parityShards int) inversionTree { |
||||
identity, _ := identityMatrix(dataShards) |
||||
root := inversionNode{ |
||||
matrix: identity, |
||||
children: make([]*inversionNode, dataShards+parityShards), |
||||
} |
||||
return inversionTree{ |
||||
mutex: &sync.RWMutex{}, |
||||
root: root, |
||||
} |
||||
} |
||||
|
||||
// GetInvertedMatrix returns the cached inverted matrix or nil if it
|
||||
// is not found in the tree keyed on the indices of invalid rows.
|
||||
func (t inversionTree) GetInvertedMatrix(invalidIndices []int) matrix { |
||||
// Lock the tree for reading before accessing the tree.
|
||||
t.mutex.RLock() |
||||
defer t.mutex.RUnlock() |
||||
|
||||
// If no invalid indices were give we should return the root
|
||||
// identity matrix.
|
||||
if len(invalidIndices) == 0 { |
||||
return t.root.matrix |
||||
} |
||||
|
||||
// Recursively search for the inverted matrix in the tree, passing in
|
||||
// 0 as the parent index as we start at the root of the tree.
|
||||
return t.root.getInvertedMatrix(invalidIndices, 0) |
||||
} |
||||
|
||||
// errAlreadySet is returned if the root node matrix is overwritten
|
||||
var errAlreadySet = errors.New("the root node identity matrix is already set") |
||||
|
||||
// InsertInvertedMatrix inserts a new inverted matrix into the tree
|
||||
// keyed by the indices of invalid rows. The total number of shards
|
||||
// is required for creating the proper length lists of child nodes for
|
||||
// each node.
|
||||
func (t inversionTree) InsertInvertedMatrix(invalidIndices []int, matrix matrix, shards int) error { |
||||
// If no invalid indices were given then we are done because the
|
||||
// root node is already set with the identity matrix.
|
||||
if len(invalidIndices) == 0 { |
||||
return errAlreadySet |
||||
} |
||||
|
||||
if !matrix.IsSquare() { |
||||
return errNotSquare |
||||
} |
||||
|
||||
// Lock the tree for writing and reading before accessing the tree.
|
||||
t.mutex.Lock() |
||||
defer t.mutex.Unlock() |
||||
|
||||
// Recursively create nodes for the inverted matrix in the tree until
|
||||
// we reach the node to insert the matrix to. We start by passing in
|
||||
// 0 as the parent index as we start at the root of the tree.
|
||||
t.root.insertInvertedMatrix(invalidIndices, matrix, shards, 0) |
||||
|
||||
return nil |
||||
} |
||||
|
||||
func (n inversionNode) getInvertedMatrix(invalidIndices []int, parent int) matrix { |
||||
// Get the child node to search next from the list of children. The
|
||||
// list of children starts relative to the parent index passed in
|
||||
// because the indices of invalid rows is sorted (by default). As we
|
||||
// search recursively, the first invalid index gets popped off the list,
|
||||
// so when searching through the list of children, use that first invalid
|
||||
// index to find the child node.
|
||||
firstIndex := invalidIndices[0] |
||||
node := n.children[firstIndex-parent] |
||||
|
||||
// If the child node doesn't exist in the list yet, fail fast by
|
||||
// returning, so we can construct and insert the proper inverted matrix.
|
||||
if node == nil { |
||||
return nil |
||||
} |
||||
|
||||
// If there's more than one invalid index left in the list we should
|
||||
// keep searching recursively.
|
||||
if len(invalidIndices) > 1 { |
||||
// Search recursively on the child node by passing in the invalid indices
|
||||
// with the first index popped off the front. Also the parent index to
|
||||
// pass down is the first index plus one.
|
||||
return node.getInvertedMatrix(invalidIndices[1:], firstIndex+1) |
||||
} |
||||
// If there aren't any more invalid indices to search, we've found our
|
||||
// node. Return it, however keep in mind that the matrix could still be
|
||||
// nil because intermediary nodes in the tree are created sometimes with
|
||||
// their inversion matrices uninitialized.
|
||||
return node.matrix |
||||
} |
||||
|
||||
func (n inversionNode) insertInvertedMatrix(invalidIndices []int, matrix matrix, shards, parent int) { |
||||
// As above, get the child node to search next from the list of children.
|
||||
// The list of children starts relative to the parent index passed in
|
||||
// because the indices of invalid rows is sorted (by default). As we
|
||||
// search recursively, the first invalid index gets popped off the list,
|
||||
// so when searching through the list of children, use that first invalid
|
||||
// index to find the child node.
|
||||
firstIndex := invalidIndices[0] |
||||
node := n.children[firstIndex-parent] |
||||
|
||||
// If the child node doesn't exist in the list yet, create a new
|
||||
// node because we have the writer lock and add it to the list
|
||||
// of children.
|
||||
if node == nil { |
||||
// Make the length of the list of children equal to the number
|
||||
// of shards minus the first invalid index because the list of
|
||||
// invalid indices is sorted, so only this length of errors
|
||||
// are possible in the tree.
|
||||
node = &inversionNode{ |
||||
children: make([]*inversionNode, shards-firstIndex), |
||||
} |
||||
// Insert the new node into the tree at the first index relative
|
||||
// to the parent index that was given in this recursive call.
|
||||
n.children[firstIndex-parent] = node |
||||
} |
||||
|
||||
// If there's more than one invalid index left in the list we should
|
||||
// keep searching recursively in order to find the node to add our
|
||||
// matrix.
|
||||
if len(invalidIndices) > 1 { |
||||
// As above, search recursively on the child node by passing in
|
||||
// the invalid indices with the first index popped off the front.
|
||||
// Also the total number of shards and parent index are passed down
|
||||
// which is equal to the first index plus one.
|
||||
node.insertInvertedMatrix(invalidIndices[1:], matrix, shards, firstIndex+1) |
||||
} else { |
||||
// If there aren't any more invalid indices to search, we've found our
|
||||
// node. Cache the inverted matrix in this node.
|
||||
node.matrix = matrix |
||||
} |
||||
} |
Loading…
Reference in new issue