Merge pull request #201 from harshavardhana/pr_out_update_erasure_documentation

master
Harshavardhana 10 years ago
commit 0c36dc24f5
  1. 30
      pkg/storage/erasure/doc.go
  2. 4
      pkg/storage/erasure/erasure_decode.go
  3. 6
      pkg/storage/erasure/erasure_encode.go

@ -1,15 +1,20 @@
// Package erasure is a Go wrapper for the Intel Intelligent Storage
// Acceleration Library (Intel ISA-L). Intel ISA-L is a CPU optimized
// implementation of erasure code.
// implementation of erasure coding algorithms.
//
// For more information on Intel ISA-L, please visit:
// https://01.org/intel%C2%AE-storage-acceleration-library-open-source-version
//
// Usage
// Usage:
//
// TODO: Explain Encode and Decode inputs and outputs
// Encode encodes a block of data. The input is the original data. The output
// is a 2 tuple containing (k + m) chunks of erasure encoded data and the
// length of the original object.
//
// TODO: Explain matrix size and how it corresponds to protection level
// Decode decodes 2 tuple data containing (k + m) chunks back into its original form.
// Additionally original block length should also be provided as input.
//
// Decoded data is exactly similar in length and content as the original data.
//
// Encoding data may be performed in 3 steps.
//
@ -23,13 +28,27 @@
// 2. Create a new encoder
// 3. Decode data
//
// Encoder parameters contain four configurable elements:
// Encoder parameters contain three configurable elements:
// ParseEncoderParams(k, m, technique int) (EncoderParams, error)
// k - Number of rows in matrix
// m - Number of colums in matrix
// technique - Matrix type, can be either CAUCHY (recommended) or VANDERMONDE
// constraints: k + m < Galois Field (2^8)
//
// Choosing right parity and matrix technique is left for application to decide.
//
// But here are the few points to keep in mind
//
// Techniques:
// - Vandermonde is most commonly used method for choosing coefficients in erasure
// encoding but does not guarantee invertable for every sub matrix.
// Users may want to adjust for k > 5. (k is data blocks)
// - Whereas Cauchy is our recommended method for choosing coefficients in erasure coding.
// Since any sub-matrix of a Cauchy matrix is invertable.
//
// Total blocks:
// - Data blocks and Parity blocks should not be greater than 'Galois Field' (2^8)
//
// Example
//
// Creating and using an encoder
@ -44,4 +63,5 @@
// params := erasure.ParseEncoderParams(10, 5, erasure.CAUCHY)
// encoder := erasure.NewEncoder(params)
// originalData, err := encoder.Decode(encodedData, length)
//
package erasure

@ -27,6 +27,10 @@ import (
"unsafe"
)
// Decode decodes 2 tuple data containing (k + m) chunks back into its original form.
// Additionally original block length should also be provided as input.
//
// Decoded data is exactly similar in length and content as the original data.
func (e *Encoder) Decode(chunks [][]byte, length int) ([]byte, error) {
var decode_matrix *C.uint8_t
var decode_tbls *C.uint8_t

@ -56,9 +56,9 @@ type Encoder struct {
// ParseEncoderParams creates an EncoderParams object.
//
// k and n represent the matrix size, which corresponds to the protection level.
//
// k and m represent the matrix size, which corresponds to the protection level
// technique is the matrix type. Valid inputs are CAUCHY (recommended) or VANDERMONDE.
//
func ParseEncoderParams(k, m, technique int) (*EncoderParams, error) {
if k < 1 {
return nil, errors.New("k cannot be zero")
@ -88,7 +88,7 @@ func ParseEncoderParams(k, m, technique int) (*EncoderParams, error) {
}, nil
}
// NewEncoder creates an encoder with a given set of parameters.
// NewEncoder creates an encoder object with a given set of parameters.
func NewEncoder(ep *EncoderParams) *Encoder {
var k = C.int(ep.K)
var m = C.int(ep.M)

Loading…
Cancel
Save