Minio protects data against hardware failures and silent data corruption using erasure code and checksums. You may lose half the number (N/2) of drives and still be able to recover the data.
Erasure code is a mathematical algorithm to reconstruct missing or corrupted data. Minio uses Reed-Solomon code to shard objects into N/2 data and N/2 parity blocks. This means that in a 12 drive setup, an object is sharded across as 6 data and 6 parity blocks. You can lose as many as 6 drives (be it parity or data) and still reconstruct the data reliably from the remaining drives.
@ -22,28 +18,13 @@ Bit Rot also known as Data Rot or Silent Data Corruption is a serious data loss
Minio's erasure coded backend uses high speed [BLAKE2](https://blog.minio.io/accelerating-blake2b-by-4x-using-simd-in-go-assembly-33ef16c8a56b#.jrp1fdwer) hash based checksums to protect against Bit Rot.
## Deployment Scenarios
Minio server runs on a variety of hardware, operating systems and virtual/container environments.
## Get Started with Minio in Erasure Code
Minio erasure code backend is limited by design to a minimum of 4 drives and a maximum of 16 drives. The hard limit of 16 drives comes from operational experience. Failure domain becomes too large beyond 16 drives. If you need to scale beyond 16 drives, you may run multiple instances of Minio server on different ports.
### 1. Prerequisites:
#### Reference Physical Hardware:
* [SMC 5018A-AR12L (Intel Atom)](http://www.supermicro.com/products/system/1U/5018/SSG-5018A-AR12L.cfm?parts=SHOW) - SMC 1U SoC Atom C2750 platform with 12x 3.5” drive bays