You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
minio/erasure/encode.go

210 lines
4.6 KiB

/*
* Mini Object Storage, (C) 2014 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// +build linux
// amd64
package erasure
// #cgo CPPFLAGS: -Iisal/include
// #cgo LDFLAGS: isal/isa-l.so
// #include <stdlib.h>
// #include <erasure-code.h>
// #include <stdlib.h>
//
// #include "cpufeatures.h"
import "C"
import (
"errors"
"unsafe"
)
const (
VANDERMONDE = iota
CAUCHY = iota
)
const (
DEFAULT_K = 10
DEFAULT_M = 3
)
type EncoderParams struct {
k,
m,
w,
n,
technique int // cauchy or vandermonde matrix (RS)
}
type Encoder struct {
p *EncoderParams
k,
m,
w C.int
encode_matrix,
encode_tbls,
decode_matrix,
decode_tbls *C.uchar
}
// Parameter validation
func ValidateParams(k, m, w, technique int) (*EncoderParams, error) {
if k < 1 {
return nil, errors.New("k cannot be zero")
}
if m < 1 {
return nil, errors.New("m cannot be zero")
}
if k+m > 255 {
return nil, errors.New("(k + m) cannot be bigger than Galois field GF(2^8) - 1")
}
if 1<<uint(w) < k+m {
return nil, errors.New("Wordsize should be bigger than Galois field GF(2^8) - 1")
}
if w < 0 {
return nil, errors.New("Wordsize cannot be negative")
}
switch technique {
case VANDERMONDE:
break
case CAUCHY:
break
default:
return nil, errors.New("Technique can be either vandermonde or cauchy")
}
return &EncoderParams{
k: k,
m: m,
w: w,
n: k + m,
technique: technique,
}, nil
}
func NewEncoder(ep *EncoderParams) *Encoder {
var k = C.int(ep.k)
var m = C.int(ep.m)
var w = C.int(ep.w)
var n = C.int(ep.n)
var encode_matrix *C.uchar
var encode_tbls *C.uchar
var matrix_size C.size_t
var encode_tbls_size C.size_t
matrix_size = C.size_t(k * n)
encode_matrix = (*C.uchar)(unsafe.Pointer(C.malloc(matrix_size)))
defer C.free(unsafe.Pointer(encode_matrix))
encode_tbls_size = C.size_t(k * n * 32)
encode_tbls = (*C.uchar)(unsafe.Pointer(C.malloc(encode_tbls_size)))
defer C.free(unsafe.Pointer(encode_tbls))
if ep.technique == VANDERMONDE {
// Commonly used method for choosing coefficients in erasure encoding
// but does not guarantee invertable for every sub matrix. For large
// k it is possible to find cases where the decode matrix chosen from
// sources and parity not in erasure are not invertable. Users may
// want to adjust for k > 5.
// -- Intel
C.gf_gen_rs_matrix(encode_matrix, n, k)
} else if ep.technique == CAUCHY {
C.gf_gen_cauchy1_matrix(encode_matrix, n, k)
}
C.ec_init_tables(k, m, encode_matrix, encode_tbls)
return &Encoder{
p: ep,
k: k,
m: m,
w: w,
encode_matrix: encode_matrix,
encode_tbls: encode_tbls,
decode_matrix: nil,
decode_tbls: nil,
}
}
func (e *Encoder) CalcChunkSize(block_len int) int {
var alignment int = e.p.k * e.p.w
var padding = block_len % alignment
var padded_len int
if padding > 0 {
padded_len = block_len + (alignment - padding)
} else {
padded_len = block_len
}
return padded_len / e.p.k
}
func (e *Encoder) Encode(block []byte) ([][]byte, int) {
var block_len = len(block)
chunk_size := e.CalcChunkSize(block_len)
padded_len := chunk_size * e.p.k
if (padded_len - block_len) > 0 {
s := make([]byte, (padded_len - block_len))
// Expand with new padded blocks to the byte array
block = append(block, s...)
}
coded_len := chunk_size * e.p.m
c := make([]byte, coded_len)
block = append(block, c...)
// Allocate chunks
chunks := make([][]byte, e.p.n)
pointers := make([]*byte, e.p.n)
var i int
// Add data blocks to chunks
for i = 0; i < e.p.k; i++ {
chunks[i] = block[i*chunk_size : (i+1)*chunk_size]
pointers[i] = &chunks[i][0]
}
for i = e.p.k; i < e.p.n; i++ {
chunks[i] = make([]byte, chunk_size)
pointers[i] = &chunks[i][0]
}
data := (**C.uchar)(unsafe.Pointer(&pointers[:e.p.k][0]))
coding := (**C.uchar)(unsafe.Pointer(&pointers[e.p.k:][0]))
C.ec_encode_data(C.int(chunk_size), e.k, e.m, e.encode_tbls, data,
coding)
return chunks, block_len
}
func GetEncoder(ep EncoderParams) *Encoder {
return DefaultCache.GetC(ep)
}
func Encode(data []byte, ep EncoderParams) (chunks [][]byte, length int) {
return GetEncoder(ep).Encode(data)
}