You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
minio/pkg/s3select/select_test.go

612 lines
15 KiB

/*
* Minio Cloud Storage, (C) 2018 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package s3select
import (
"bytes"
"encoding/csv"
"fmt"
"math/rand"
"strconv"
"testing"
"time"
humanize "github.com/dustin/go-humanize"
"github.com/tidwall/gjson"
"github.com/minio/minio/pkg/s3select/format"
)
// This function returns the index of a string in a list
func stringIndex(a string, list []string) int {
for i, v := range list {
if v == a {
return i
}
}
return -1
}
// TestHelperFunctions is a unit test which tests some
// small helper string functions.
func TestHelperFunctions(t *testing.T) {
tables := []struct {
myReq string
myList []string
myIndex int
expected bool
}{
{"test1", []string{"test1", "test2", "test3", "test4", "test5"}, 0, true},
{"random", []string{"test1", "test2", "test3", "test4", "test5"}, -1, false},
{"test3", []string{"test1", "test2", "test3", "test4", "test5"}, 2, true},
}
for _, table := range tables {
if format.StringInSlice(table.myReq, table.myList) != table.expected {
t.Error()
}
if stringIndex(table.myReq, table.myList) != table.myIndex {
t.Error()
}
}
}
// TestStateMachine is a unit test which ensures that the lowest level of the
// interpreter is converting properly.
func TestStateMachine(t *testing.T) {
tables := []struct {
operand string
operator string
leftArg string
err error
expected bool
}{
{"", ">", "2012", nil, true},
{"2005", ">", "2012", nil, true},
{"2005", ">", "2012", nil, true},
{"2012.0000", ">", "2014.000", nil, true},
{"2012", "!=", "2014.000", nil, true},
{"NA", ">", "2014.000", nil, true},
{"2012", ">", "2014.000", nil, false},
{"2012.0000", ">", "2014", nil, false},
{"", "<", "2012", nil, false},
{"2012.0000", "<", "2014.000", nil, false},
{"2014", ">", "Random", nil, false},
{"test3", ">", "aandom", nil, false},
{"true", ">", "true", ErrUnsupportedSyntax, false},
}
for i, table := range tables {
val, err := evaluateOperator(gjson.Parse(table.leftArg), table.operator, gjson.Parse(table.operand))
if err != table.err {
t.Errorf("Test %d: expected %v, got %v", i+1, table.err, err)
}
if val != table.expected {
t.Errorf("Test %d: expected %t, got %t", i+1, table.expected, val)
}
}
}
// TestOperators is a unit test which ensures that the appropriate values are
// being returned from the operators functions.
func TestOperators(t *testing.T) {
tables := []struct {
operator string
err error
}{
{">", nil},
{"%", ErrParseUnknownOperator},
}
for _, table := range tables {
err := checkValidOperator(table.operator)
if err != table.err {
t.Error()
}
}
}
// Unit tests for the main function that performs aggreggation.
func TestAggregationFunc(t *testing.T) {
columnsMap := make(map[string]int)
columnsMap["Col1"] = 0
columnsMap["Col2"] = 1
tables := []struct {
counter int
filtrCount int
myAggVals []float64
columnsMap map[string]int
storeReqCols []string
storeFunctions []string
record []byte
err error
expectedVal float64
}{
{10, 5, []float64{10, 11, 12, 13, 14}, columnsMap, []string{"Col1"}, []string{"count"}, []byte("{\"Col1\":\"1\",\"Col2\":\"2\"}"), nil, 11},
{10, 5, []float64{10}, columnsMap, []string{"Col1"}, []string{"min"}, []byte("{\"Col1\":\"1\",\"Col2\":\"2\"}"), nil, 1},
{10, 5, []float64{10}, columnsMap, []string{"Col1"}, []string{"max"}, []byte("{\"Col1\":\"1\",\"Col2\":\"2\"}"), nil, 10},
{10, 5, []float64{10}, columnsMap, []string{"Col1"}, []string{"sum"}, []byte("{\"Col1\":\"1\",\"Col2\":\"2\"}"), nil, 11},
{1, 1, []float64{10}, columnsMap, []string{"Col1"}, []string{"avg"}, []byte("{\"Col1\":\"1\",\"Col2\":\"2\"}"), nil, 5.500},
{10, 5, []float64{0.0000}, columnsMap, []string{"Col1"}, []string{"random"}, []byte("{\"Col1\":\"1\",\"Col2\":\"2\"}"),
ErrParseNonUnaryAgregateFunctionCall, 0},
{0, 5, []float64{0}, columnsMap, []string{"0"}, []string{"count"}, []byte("{\"Col1\":\"1\",\"Col2\":\"2\"}"), nil, 1},
{10, 5, []float64{10}, columnsMap, []string{"1"}, []string{"min"}, []byte("{\"_1\":\"1\",\"_2\":\"2\"}"), nil, 1},
}
for _, table := range tables {
err := aggregationFns(table.counter, table.filtrCount, table.myAggVals, table.storeReqCols, table.storeFunctions, table.record)
if table.err != err {
t.Error()
}
if table.myAggVals[0] != table.expectedVal {
t.Error()
}
}
}
// TestStringComparator is a unit test which ensures that the appropriate
// values are being compared for strings.
func TestStringComparator(t *testing.T) {
tables := []struct {
operand string
operator string
myVal string
expected bool
err error
}{
{"random", ">", "myName", "random" > "myName", nil},
{"12", "!=", "myName", "12" != "myName", nil},
{"12", "=", "myName", "12" == "myName", nil},
{"12", "<=", "myName", "12" <= "myName", nil},
{"12", ">=", "myName", "12" >= "myName", nil},
{"12", "<", "myName", "12" < "myName", nil},
{"name", "like", "_x%", false, nil},
{"12", "randomoperator", "myName", false, ErrUnsupportedSyntax},
}
for _, table := range tables {
myVal, err := stringEval(table.operand, table.operator, table.myVal)
if err != table.err {
t.Error()
}
if myVal != table.expected {
t.Error()
}
}
}
// TestFloatComparator is a unit test which ensures that the appropriate
// values are being compared for floats.
func TestFloatComparator(t *testing.T) {
tables := []struct {
operand float64
operator string
myVal float64
expected bool
err error
}{
{12.000, ">", 13.000, 12.000 > 13.000, nil},
{1000.000, "!=", 1000.000, 1000.000 != 1000.000, nil},
{1000.000, "<", 1000.000, 1000.000 < 1000.000, nil},
{1000.000, "<=", 1000.000, 1000.000 <= 1000.000, nil},
{1000.000, ">=", 1000.000, 1000.000 >= 1000.000, nil},
{1000.000, "=", 1000.000, 1000.000 == 1000.000, nil},
{17.000, "randomoperator", 0.0, false, ErrUnsupportedSyntax},
}
for _, table := range tables {
myVal, err := floatEval(table.operand, table.operator, table.myVal)
if err != table.err {
t.Error()
}
if myVal != table.expected {
t.Error()
}
}
}
// TestIntComparator is a unit test which ensures that the appropriate values
// are being compared for ints.
func TestIntComparator(t *testing.T) {
tables := []struct {
operand int64
operator string
myVal int64
expected bool
err error
}{
{12, ">", 13, 12.000 > 13.000, nil},
{1000, "!=", 1000, 1000.000 != 1000.000, nil},
{1000, "<", 1000, 1000.000 < 1000.000, nil},
{1000, "<=", 1000, 1000.000 <= 1000.000, nil},
{1000, ">=", 1000, 1000.000 >= 1000.000, nil},
{1000, "=", 1000, 1000.000 >= 1000.000, nil},
{17, "randomoperator", 0, false, ErrUnsupportedSyntax},
}
for _, table := range tables {
myVal, err := intEval(table.operand, table.operator, table.myVal)
if err != table.err {
t.Error()
}
if myVal != table.expected {
t.Error()
}
}
}
// TestSizeFunction is a function which provides unit testing for the function
// which calculates size.
func TestSizeFunction(t *testing.T) {
tables := []struct {
myRecord []string
expected int64
}{
{[]string{"test1", "test2", "test3", "test4", "test5"}, 30},
}
for _, table := range tables {
if format.ProcessSize(table.myRecord) != table.expected {
t.Error()
}
}
}
func TestMatch(t *testing.T) {
testCases := []struct {
pattern string
text string
matched bool
}{
// Test case - 1.
// Test case so that the match occurs on the opening letter.
{
pattern: "a%",
text: "apple",
matched: true,
},
// Test case - 2.
// Test case so that the ending letter is true.
{
pattern: "%m",
text: "random",
matched: true,
},
// Test case - 3.
// Test case so that a character is at the appropriate position.
{
pattern: "_d%",
text: "adam",
matched: true,
},
// Test case - 4.
// Test case so that a character is at the appropriate position.
{
pattern: "_d%",
text: "apple",
matched: false,
},
// Test case - 5.
// Test case with checking that it is at least 3 in length
{
pattern: "a_%_%",
text: "ap",
matched: false,
},
{
pattern: "a_%_%",
text: "apple",
matched: true,
},
{
pattern: "%or%",
text: "orphan",
matched: true,
},
{
pattern: "%or%",
text: "dolphin",
matched: false,
},
{
pattern: "%or%",
text: "dorlphin",
matched: true,
},
{
pattern: "2__3",
text: "2003",
matched: true,
},
{
pattern: "_YYYY_",
text: "aYYYYa",
matched: true,
},
{
pattern: "C%",
text: "CA",
matched: true,
},
{
pattern: "C%",
text: "SC",
matched: false,
},
{
pattern: "%C",
text: "SC",
matched: true,
},
{
pattern: "%C",
text: "CA",
matched: false,
},
{
pattern: "%C",
text: "ACCC",
matched: true,
},
{
pattern: "C%",
text: "CCC",
matched: true,
},
{
pattern: "j%",
text: "mejri",
matched: false,
},
{
pattern: "a%o",
text: "ando",
matched: true,
},
{
pattern: "%j",
text: "mejri",
matched: false,
},
{
pattern: "%ja",
text: "mejrija",
matched: true,
},
{
pattern: "ja%",
text: "jamal",
matched: true,
},
{
pattern: "a%o",
text: "andp",
matched: false,
},
{
pattern: "_r%",
text: "arpa",
matched: true,
},
{
pattern: "_r%",
text: "apra",
matched: false,
},
{
pattern: "a_%_%",
text: "appple",
matched: true,
},
{
pattern: "l_b%",
text: "lebron",
matched: true,
},
{
pattern: "leb%",
text: "Dalembert",
matched: false,
},
{
pattern: "leb%",
text: "Landesberg",
matched: false,
},
{
pattern: "leb%",
text: "Mccalebb",
matched: false,
},
{
pattern: "%lebb",
text: "Mccalebb",
matched: true,
},
}
// Iterating over the test cases, call the function under test and asert the output.
for i, testCase := range testCases {
actualResult, err := likeConvert(testCase.pattern, testCase.text)
if err != nil {
t.Error()
}
if testCase.matched != actualResult {
fmt.Println("Expected Pattern", testCase.pattern, "Expected Text", testCase.text)
t.Errorf("Test %d: Expected the result to be `%v`, but instead found it to be `%v`", i+1, testCase.matched, actualResult)
}
}
}
// TestFuncProcessing is a unit test which ensures that the appropriate values are
// being returned from the Processing... functions.
func TestFuncProcessing(t *testing.T) {
tables := []struct {
myString string
coalList []string
myValString string
myValCoal string
myValNull string
stringFunc string
}{
{"lower", []string{"random", "hello", "random"}, "LOWER", "random", "", "UPPER"},
{"LOWER", []string{"missing", "hello", "random"}, "lower", "hello", "null", "LOWER"},
}
for _, table := range tables {
if table.coalList != nil {
myVal := processCoalNoIndex(table.coalList)
if myVal != table.myValCoal {
t.Error()
}
}
myVal := applyStrFunc(gjson.Result{
Type: gjson.String,
Str: table.myString,
}, table.stringFunc)
if myVal != table.myValString {
t.Error()
}
}
}
const charset = "abcdefghijklmnopqrstuvwxyz" + "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
var seededRand = rand.New(rand.NewSource(time.Now().UnixNano()))
func StringWithCharset(length int, charset string) string {
b := make([]byte, length)
for i := range b {
b[i] = charset[seededRand.Intn(len(charset))]
}
return string(b)
}
func String(length int) string {
return StringWithCharset(length, charset)
}
func genCSV(b *bytes.Buffer, records int) error {
b.Reset()
w := csv.NewWriter(b)
w.Write([]string{"id", "name", "age", "city"})
for i := 0; i < records; i++ {
w.Write([]string{
strconv.Itoa(i),
String(10),
String(5),
String(10),
})
}
// Write any buffered data to the underlying writer (standard output).
w.Flush()
return w.Error()
}
func benchmarkSQLAll(b *testing.B, records int) {
benchmarkSQL(b, records, "select * from S3Object")
}
func benchmarkSQLAggregate(b *testing.B, records int) {
benchmarkSQL(b, records, "select count(*) from S3Object")
}
func benchmarkSQL(b *testing.B, records int, query string) {
var (
buf bytes.Buffer
output bytes.Buffer
)
genCSV(&buf, records)
b.ResetTimer()
b.ReportAllocs()
sreq := ObjectSelectRequest{}
sreq.Expression = query
sreq.ExpressionType = QueryExpressionTypeSQL
sreq.InputSerialization.CSV = &struct {
FileHeaderInfo CSVFileHeaderInfo
RecordDelimiter string
FieldDelimiter string
QuoteCharacter string
QuoteEscapeCharacter string
Comments string
}{}
sreq.InputSerialization.CSV.FileHeaderInfo = CSVFileHeaderInfoUse
sreq.InputSerialization.CSV.RecordDelimiter = "\n"
sreq.InputSerialization.CSV.FieldDelimiter = ","
sreq.OutputSerialization.CSV = &struct {
QuoteFields CSVQuoteFields
RecordDelimiter string
FieldDelimiter string
QuoteCharacter string
QuoteEscapeCharacter string
}{}
sreq.OutputSerialization.CSV.RecordDelimiter = "\n"
sreq.OutputSerialization.CSV.FieldDelimiter = ","
s3s, err := New(&buf, int64(buf.Len()), sreq)
if err != nil {
b.Fatal(err)
}
for i := 0; i < b.N; i++ {
output.Reset()
if err = Execute(&output, s3s); err != nil {
b.Fatal(err)
}
}
}
// BenchmarkSQLAggregate_100K - benchmark count(*) function with 100k records.
func BenchmarkSQLAggregate_100K(b *testing.B) {
benchmarkSQLAggregate(b, humanize.KiByte*100)
}
// BenchmarkSQLAggregate_1M - benchmark count(*) function with 1m records.
func BenchmarkSQLAggregate_1M(b *testing.B) {
benchmarkSQLAggregate(b, humanize.MiByte)
}
// BenchmarkSQLAggregate_2M - benchmark count(*) function with 2m records.
func BenchmarkSQLAggregate_2M(b *testing.B) {
benchmarkSQLAggregate(b, 2*humanize.MiByte)
}
// BenchmarkSQLAggregate_10M - benchmark count(*) function with 10m records.
func BenchmarkSQLAggregate_10M(b *testing.B) {
benchmarkSQLAggregate(b, 10*humanize.MiByte)
}
// BenchmarkSQLAll_100K - benchmark * function with 100k records.
func BenchmarkSQLAll_100K(b *testing.B) {
benchmarkSQLAll(b, humanize.KiByte*100)
}
// BenchmarkSQLAll_1M - benchmark * function with 1m records.
func BenchmarkSQLAll_1M(b *testing.B) {
benchmarkSQLAll(b, humanize.MiByte)
}
// BenchmarkSQLAll_2M - benchmark * function with 2m records.
func BenchmarkSQLAll_2M(b *testing.B) {
benchmarkSQLAll(b, 2*humanize.MiByte)
}
// BenchmarkSQLAll_10M - benchmark * function with 10m records.
func BenchmarkSQLAll_10M(b *testing.B) {
benchmarkSQLAll(b, 10*humanize.MiByte)
}