You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
minio/cmd/xl-v1-utils_test.go

432 lines
16 KiB

/*
* Minio Cloud Storage, (C) 2015, 2016, 2017 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package cmd
import (
"encoding/json"
"reflect"
"strconv"
"testing"
humanize "github.com/dustin/go-humanize"
)
// Tests caclculating disk count.
func TestDiskCount(t *testing.T) {
testCases := []struct {
disks []StorageAPI
diskCount int
}{
// Test case - 1
{
disks: []StorageAPI{&posix{}, &posix{}, &posix{}, &posix{}},
diskCount: 4,
},
// Test case - 2
{
disks: []StorageAPI{nil, &posix{}, &posix{}, &posix{}},
diskCount: 3,
},
}
for i, testCase := range testCases {
cdiskCount := diskCount(testCase.disks)
if cdiskCount != testCase.diskCount {
t.Errorf("Test %d: Expected %d, got %d", i+1, testCase.diskCount, cdiskCount)
}
}
}
// Test for reduceErrs, reduceErr reduces collection
// of errors into a single maximal error with in the list.
func TestReduceErrs(t *testing.T) {
// List all of all test cases to validate various cases of reduce errors.
testCases := []struct {
errs []error
ignoredErrs []error
err error
}{
// Validate if have reduced properly.
{[]error{
errDiskNotFound,
errDiskNotFound,
errDiskFull,
}, []error{}, errXLReadQuorum},
// Validate if have no consensus.
{[]error{
errDiskFull,
errDiskNotFound,
nil, nil,
}, []error{}, errXLReadQuorum},
// Validate if have consensus and errors ignored.
{[]error{
errVolumeNotFound,
errVolumeNotFound,
errVolumeNotFound,
errVolumeNotFound,
errVolumeNotFound,
errDiskNotFound,
errDiskNotFound,
}, []error{errDiskNotFound}, errVolumeNotFound},
{[]error{}, []error{}, errXLReadQuorum},
{[]error{errFileNotFound, errFileNotFound, errFileNotFound,
errFileNotFound, errFileNotFound, nil, nil, nil, nil, nil},
nil, nil},
}
// Validates list of all the testcases for returning valid errors.
for i, testCase := range testCases {
gotErr := reduceReadQuorumErrs(testCase.errs, testCase.ignoredErrs, 5)
if errorCause(gotErr) != testCase.err {
t.Errorf("Test %d : expected %s, got %s", i+1, testCase.err, gotErr)
}
gotNewErr := reduceWriteQuorumErrs(testCase.errs, testCase.ignoredErrs, 6)
if errorCause(gotNewErr) != errXLWriteQuorum {
t.Errorf("Test %d : expected %s, got %s", i+1, errXLWriteQuorum, gotErr)
}
}
}
// TestHashOrder - test order of ints in array
func TestHashOrder(t *testing.T) {
testCases := []struct {
objectName string
hashedOrder []int
}{
// cases which should pass the test.
// passing in valid object name.
{"object", []int{15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}},
{"The Shining Script <v1>.pdf", []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}},
{"Cost Benefit Analysis (2009-2010).pptx", []int{15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}},
{"117Gn8rfHL2ACARPAhaFd0AGzic9pUbIA/5OCn5A", []int{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2}},
{"SHØRT", []int{11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}},
{"There are far too many object names, and far too few bucket names!", []int{15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}},
{"a/b/c/", []int{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2}},
{"/a/b/c", []int{7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6}},
{string([]byte{0xff, 0xfe, 0xfd}), []int{15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}},
}
// Tests hashing order to be consistent.
for i, testCase := range testCases {
hashedOrder := hashOrder(testCase.objectName, 16)
if !reflect.DeepEqual(testCase.hashedOrder, hashedOrder) {
t.Errorf("Test case %d: Expected \"%#v\" but failed \"%#v\"", i+1, testCase.hashedOrder, hashedOrder)
}
}
// Tests hashing order to fail for when order is '-1'.
if hashedOrder := hashOrder("This will fail", -1); hashedOrder != nil {
t.Errorf("Test: Expect \"nil\" but failed \"%#v\"", hashedOrder)
}
}
// newTestXLMetaV1 - initializes new xlMetaV1, adds version, allocates a fresh erasure info and metadata.
func newTestXLMetaV1() xlMetaV1 {
xlMeta := xlMetaV1{}
xlMeta.Version = xlMetaVersion
xlMeta.Format = xlMetaFormat
xlMeta.Minio.Release = "test"
xlMeta.Erasure = erasureInfo{
Algorithm: "klauspost/reedsolomon/vandermonde",
DataBlocks: 5,
ParityBlocks: 5,
BlockSize: 10485760,
Index: 10,
Distribution: []int{9, 10, 1, 2, 3, 4, 5, 6, 7, 8},
}
xlMeta.Stat = statInfo{
Size: int64(20),
ModTime: UTCNow(),
}
// Set meta data.
xlMeta.Meta = make(map[string]string)
xlMeta.Meta["testKey1"] = "val1"
xlMeta.Meta["testKey2"] = "val2"
return xlMeta
}
func (m *xlMetaV1) AddTestObjectCheckSum(checkSumNum int, name string, hash string, algo HashAlgo) {
checkSum := checkSumInfo{
Name: name,
Algorithm: algo,
Hash: hash,
}
m.Erasure.Checksum[checkSumNum] = checkSum
}
// AddTestObjectPart - add a new object part in order.
func (m *xlMetaV1) AddTestObjectPart(partNumber int, partName string, partETag string, partSize int64) {
partInfo := objectPartInfo{
Number: partNumber,
Name: partName,
ETag: partETag,
Size: partSize,
}
// Proceed to include new part info.
m.Parts[partNumber] = partInfo
}
// Constructs xlMetaV1{} for given number of parts and converts it into bytes.
func getXLMetaBytes(totalParts int) []byte {
xlSampleMeta := getSampleXLMeta(totalParts)
xlMetaBytes, err := json.Marshal(xlSampleMeta)
if err != nil {
panic(err)
}
return xlMetaBytes
}
// Returns sample xlMetaV1{} for number of parts.
func getSampleXLMeta(totalParts int) xlMetaV1 {
xlMeta := newTestXLMetaV1()
// Number of checksum info == total parts.
xlMeta.Erasure.Checksum = make([]checkSumInfo, totalParts)
// total number of parts.
xlMeta.Parts = make([]objectPartInfo, totalParts)
for i := 0; i < totalParts; i++ {
partName := "part." + strconv.Itoa(i+1)
// hard coding hash and algo value for the checksum, Since we are benchmarking the parsing of xl.json the magnitude doesn't affect the test,
// The magnitude doesn't make a difference, only the size does.
xlMeta.AddTestObjectCheckSum(i, partName, "a23f5eff248c4372badd9f3b2455a285cd4ca86c3d9a570b091d3fc5cd7ca6d9484bbea3f8c5d8d4f84daae96874419eda578fd736455334afbac2c924b3915a", "blake2b")
xlMeta.AddTestObjectPart(i, partName, "d3fdd79cc3efd5fe5c068d7be397934b", 67108864)
}
return xlMeta
}
// Compare the unmarshaled XLMetaV1 with the one obtained from gjson parsing.
func compareXLMetaV1(t *testing.T, unMarshalXLMeta, gjsonXLMeta xlMetaV1) {
// Start comparing the fields of xlMetaV1 obtained from gjson parsing with one parsed using json unmarshaling.
if unMarshalXLMeta.Version != gjsonXLMeta.Version {
t.Errorf("Expected the Version to be \"%s\", but got \"%s\".", unMarshalXLMeta.Version, gjsonXLMeta.Version)
}
if unMarshalXLMeta.Format != gjsonXLMeta.Format {
t.Errorf("Expected the format to be \"%s\", but got \"%s\".", unMarshalXLMeta.Format, gjsonXLMeta.Format)
}
if unMarshalXLMeta.Stat.Size != gjsonXLMeta.Stat.Size {
t.Errorf("Expected the stat size to be %v, but got %v.", unMarshalXLMeta.Stat.Size, gjsonXLMeta.Stat.Size)
}
if !unMarshalXLMeta.Stat.ModTime.Equal(gjsonXLMeta.Stat.ModTime) {
t.Errorf("Expected the modTime to be \"%v\", but got \"%v\".", unMarshalXLMeta.Stat.ModTime, gjsonXLMeta.Stat.ModTime)
}
if unMarshalXLMeta.Erasure.Algorithm != gjsonXLMeta.Erasure.Algorithm {
t.Errorf("Expected the erasure algorithm to be \"%v\", but got \"%v\".", unMarshalXLMeta.Erasure.Algorithm, gjsonXLMeta.Erasure.Algorithm)
}
if unMarshalXLMeta.Erasure.DataBlocks != gjsonXLMeta.Erasure.DataBlocks {
t.Errorf("Expected the erasure data blocks to be %v, but got %v.", unMarshalXLMeta.Erasure.DataBlocks, gjsonXLMeta.Erasure.DataBlocks)
}
if unMarshalXLMeta.Erasure.ParityBlocks != gjsonXLMeta.Erasure.ParityBlocks {
t.Errorf("Expected the erasure parity blocks to be %v, but got %v.", unMarshalXLMeta.Erasure.ParityBlocks, gjsonXLMeta.Erasure.ParityBlocks)
}
if unMarshalXLMeta.Erasure.BlockSize != gjsonXLMeta.Erasure.BlockSize {
t.Errorf("Expected the erasure block size to be %v, but got %v.", unMarshalXLMeta.Erasure.BlockSize, gjsonXLMeta.Erasure.BlockSize)
}
if unMarshalXLMeta.Erasure.Index != gjsonXLMeta.Erasure.Index {
t.Errorf("Expected the erasure index to be %v, but got %v.", unMarshalXLMeta.Erasure.Index, gjsonXLMeta.Erasure.Index)
}
if len(unMarshalXLMeta.Erasure.Distribution) != len(gjsonXLMeta.Erasure.Distribution) {
t.Errorf("Expected the size of Erasure Distribution to be %d, but got %d.", len(unMarshalXLMeta.Erasure.Distribution), len(gjsonXLMeta.Erasure.Distribution))
} else {
for i := 0; i < len(unMarshalXLMeta.Erasure.Distribution); i++ {
if unMarshalXLMeta.Erasure.Distribution[i] != gjsonXLMeta.Erasure.Distribution[i] {
t.Errorf("Expected the Erasure Distribution to be %d, got %d.", unMarshalXLMeta.Erasure.Distribution[i], gjsonXLMeta.Erasure.Distribution[i])
}
}
}
if len(unMarshalXLMeta.Erasure.Checksum) != len(gjsonXLMeta.Erasure.Checksum) {
t.Errorf("Expected the size of Erasure Checksum to be %d, but got %d.", len(unMarshalXLMeta.Erasure.Checksum), len(gjsonXLMeta.Erasure.Checksum))
} else {
for i := 0; i < len(unMarshalXLMeta.Erasure.Checksum); i++ {
if unMarshalXLMeta.Erasure.Checksum[i].Name != gjsonXLMeta.Erasure.Checksum[i].Name {
t.Errorf("Expected the Erasure Checksum Name to be \"%s\", got \"%s\".", unMarshalXLMeta.Erasure.Checksum[i].Name, gjsonXLMeta.Erasure.Checksum[i].Name)
}
if unMarshalXLMeta.Erasure.Checksum[i].Algorithm != gjsonXLMeta.Erasure.Checksum[i].Algorithm {
t.Errorf("Expected the Erasure Checksum Algorithm to be \"%s\", got \"%s.\"", unMarshalXLMeta.Erasure.Checksum[i].Algorithm, gjsonXLMeta.Erasure.Checksum[i].Algorithm)
}
if unMarshalXLMeta.Erasure.Checksum[i] != gjsonXLMeta.Erasure.Checksum[i] {
t.Errorf("Expected the Erasure Checksum Hash to be \"%s\", got \"%s\".", unMarshalXLMeta.Erasure.Checksum[i].Hash, gjsonXLMeta.Erasure.Checksum[i].Hash)
}
}
}
if unMarshalXLMeta.Minio.Release != gjsonXLMeta.Minio.Release {
t.Errorf("Expected the Release string to be \"%s\", but got \"%s\".", unMarshalXLMeta.Minio.Release, gjsonXLMeta.Minio.Release)
}
if len(unMarshalXLMeta.Parts) != len(gjsonXLMeta.Parts) {
t.Errorf("Expected info of %d parts to be present, but got %d instead.", len(unMarshalXLMeta.Parts), len(gjsonXLMeta.Parts))
} else {
for i := 0; i < len(unMarshalXLMeta.Parts); i++ {
if unMarshalXLMeta.Parts[i].Name != gjsonXLMeta.Parts[i].Name {
t.Errorf("Expected the name of part %d to be \"%s\", got \"%s\".", i+1, unMarshalXLMeta.Parts[i].Name, gjsonXLMeta.Parts[i].Name)
}
if unMarshalXLMeta.Parts[i].ETag != gjsonXLMeta.Parts[i].ETag {
t.Errorf("Expected the ETag of part %d to be \"%s\", got \"%s\".", i+1, unMarshalXLMeta.Parts[i].ETag, gjsonXLMeta.Parts[i].ETag)
}
if unMarshalXLMeta.Parts[i].Number != gjsonXLMeta.Parts[i].Number {
t.Errorf("Expected the number of part %d to be \"%d\", got \"%d\".", i+1, unMarshalXLMeta.Parts[i].Number, gjsonXLMeta.Parts[i].Number)
}
if unMarshalXLMeta.Parts[i].Size != gjsonXLMeta.Parts[i].Size {
t.Errorf("Expected the size of part %d to be %v, got %v.", i+1, unMarshalXLMeta.Parts[i].Size, gjsonXLMeta.Parts[i].Size)
}
}
}
for key, val := range unMarshalXLMeta.Meta {
gjsonVal, exists := gjsonXLMeta.Meta[key]
if !exists {
t.Errorf("No meta data entry for Key \"%s\" exists.", key)
}
if val != gjsonVal {
t.Errorf("Expected the value for Meta data key \"%s\" to be \"%s\", but got \"%s\".", key, val, gjsonVal)
}
}
}
// Tests the correctness of constructing XLMetaV1 using gjson lib.
// The result will be compared with the result obtained from json.unMarshal of the byte data.
func TestGetXLMetaV1GJson1(t *testing.T) {
xlMetaJSON := getXLMetaBytes(1)
var unMarshalXLMeta xlMetaV1
if err := json.Unmarshal(xlMetaJSON, &unMarshalXLMeta); err != nil {
t.Errorf("Unmarshalling failed")
}
gjsonXLMeta, err := xlMetaV1UnmarshalJSON(xlMetaJSON)
if err != nil {
t.Errorf("gjson parsing of XLMeta failed")
}
compareXLMetaV1(t, unMarshalXLMeta, gjsonXLMeta)
}
// Tests the correctness of constructing XLMetaV1 using gjson lib for XLMetaV1 of size 10 parts.
// The result will be compared with the result obtained from json.unMarshal of the byte data.
func TestGetXLMetaV1GJson10(t *testing.T) {
xlMetaJSON := getXLMetaBytes(10)
var unMarshalXLMeta xlMetaV1
if err := json.Unmarshal(xlMetaJSON, &unMarshalXLMeta); err != nil {
t.Errorf("Unmarshalling failed")
}
gjsonXLMeta, err := xlMetaV1UnmarshalJSON(xlMetaJSON)
if err != nil {
t.Errorf("gjson parsing of XLMeta failed")
}
compareXLMetaV1(t, unMarshalXLMeta, gjsonXLMeta)
}
// Test the predicted part size from the part index
func TestGetPartSizeFromIdx(t *testing.T) {
// Create test cases
testCases := []struct {
totalSize int64
partSize int64
partIndex int
expectedSize int64
}{
// Total size is - 1
{-1, 10, 1, -1},
// Total size is zero
{0, 10, 1, 0},
// part size 2MiB, total size 4MiB
{4 * humanize.MiByte, 2 * humanize.MiByte, 1, 2 * humanize.MiByte},
{4 * humanize.MiByte, 2 * humanize.MiByte, 2, 2 * humanize.MiByte},
{4 * humanize.MiByte, 2 * humanize.MiByte, 3, 0},
// part size 2MiB, total size 5MiB
{5 * humanize.MiByte, 2 * humanize.MiByte, 1, 2 * humanize.MiByte},
{5 * humanize.MiByte, 2 * humanize.MiByte, 2, 2 * humanize.MiByte},
{5 * humanize.MiByte, 2 * humanize.MiByte, 3, 1 * humanize.MiByte},
{5 * humanize.MiByte, 2 * humanize.MiByte, 4, 0},
}
for i, testCase := range testCases {
s, err := getPartSizeFromIdx(testCase.totalSize, testCase.partSize, testCase.partIndex)
if err != nil {
t.Errorf("Test %d: Expected to pass but failed. %s", i+1, err)
}
if err == nil && s != testCase.expectedSize {
t.Errorf("Test %d: The calculated part size is incorrect: expected = %d, found = %d\n", i+1, testCase.expectedSize, s)
}
}
testCasesFailure := []struct {
totalSize int64
partSize int64
partIndex int
err error
}{
// partSize is 0, error.
{10, 0, 1, errPartSizeZero},
{10, 1, 0, errPartSizeIndex},
}
for i, testCaseFailure := range testCasesFailure {
_, err := getPartSizeFromIdx(testCaseFailure.totalSize, testCaseFailure.partSize, testCaseFailure.partIndex)
if err == nil {
t.Errorf("Test %d: Expected to failed but passed. %s", i+1, err)
}
if err != nil && errorCause(err) != testCaseFailure.err {
t.Errorf("Test %d: Expected err %s, but got %s", i+1, testCaseFailure.err, errorCause(err))
}
}
}
func TestShuffleDisks(t *testing.T) {
nDisks := 16
disks, err := getRandomDisks(nDisks)
if err != nil {
t.Fatal(err)
}
objLayer, _, err := initObjectLayer(mustGetNewEndpointList(disks...))
if err != nil {
removeRoots(disks)
t.Fatal(err)
}
defer removeRoots(disks)
xl := objLayer.(*xlObjects)
testShuffleDisks(t, xl)
}
// Test shuffleDisks which returns shuffled slice of disks for their actual distribution.
func testShuffleDisks(t *testing.T, xl *xlObjects) {
disks := xl.storageDisks
distribution := []int{16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15}
shuffledDisks := shuffleDisks(disks, distribution)
// From the "distribution" above you can notice that:
// 1st data block is in the 9th disk (i.e distribution index 8)
// 2nd data block is in the 8th disk (i.e distribution index 7) and so on.
if shuffledDisks[0] != disks[8] ||
shuffledDisks[1] != disks[7] ||
shuffledDisks[2] != disks[9] ||
shuffledDisks[3] != disks[6] ||
shuffledDisks[4] != disks[10] ||
shuffledDisks[5] != disks[5] ||
shuffledDisks[6] != disks[11] ||
shuffledDisks[7] != disks[4] ||
shuffledDisks[8] != disks[12] ||
shuffledDisks[9] != disks[3] ||
shuffledDisks[10] != disks[13] ||
shuffledDisks[11] != disks[2] ||
shuffledDisks[12] != disks[14] ||
shuffledDisks[13] != disks[1] ||
shuffledDisks[14] != disks[15] ||
shuffledDisks[15] != disks[0] {
t.Errorf("shuffleDisks returned incorrect order.")
}
}