You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
minio/pkg/encoding/erasure/erasure_encode.go

180 lines
4.2 KiB

/*
* Minimalist Object Storage, (C) 2014 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package erasure
// #cgo CFLAGS: -O0
// #include <stdlib.h>
// #include "ec-code.h"
// #include "ec-common.h"
import "C"
import (
"errors"
"unsafe"
)
type Technique int
const (
Vandermonde Technique = iota
Cauchy
)
const (
K = 10
M = 3
)
const (
SIMDAlign = 32
)
// EncoderParams is a configuration set for building an encoder. It is created using ValidateParams.
type EncoderParams struct {
K uint8
M uint8
Technique Technique // cauchy or vandermonde matrix (RS)
}
// Encoder is an object used to encode and decode data.
type Encoder struct {
parms *EncoderParams
encode_matrix,
encode_tbls,
decode_matrix,
decode_tbls *C.uint8_t
}
// ParseEncoderParams creates an EncoderParams object.
//
// k and m represent the matrix size, which corresponds to the protection level
// technique is the matrix type. Valid inputs are Cauchy (recommended) or Vandermonde.
//
func ParseEncoderParams(k, m uint8, technique Technique) (*EncoderParams, error) {
if k < 1 {
return nil, errors.New("k cannot be zero")
}
if m < 1 {
return nil, errors.New("m cannot be zero")
}
if k+m > 255 {
return nil, errors.New("(k + m) cannot be bigger than Galois field GF(2^8) - 1")
}
switch technique {
case Vandermonde:
break
case Cauchy:
break
default:
return nil, errors.New("Technique can be either vandermonde or cauchy")
}
return &EncoderParams{
K: k,
M: m,
Technique: technique,
}, nil
}
// NewEncoder creates an encoder object with a given set of parameters.
func NewEncoder(ep *EncoderParams) *Encoder {
var encode_matrix *C.uint8_t
var encode_tbls *C.uint8_t
k := C.int(ep.K)
m := C.int(ep.M)
C.minio_init_encoder(C.int(ep.Technique), k, m, &encode_matrix,
&encode_tbls)
return &Encoder{
parms: ep,
encode_matrix: encode_matrix,
encode_tbls: encode_tbls,
decode_matrix: nil,
decode_tbls: nil,
}
}
func GetEncodedLen(inputLen int, k, m uint8) (outputLen int) {
outputLen = GetEncodedChunkLen(inputLen, k) * int(k+m)
return outputLen
}
func GetEncodedChunkLen(inputLen int, k uint8) (outputChunkLen int) {
alignment := int(k) * SIMDAlign
remainder := inputLen % alignment
paddedInputLen := inputLen
if remainder != 0 {
paddedInputLen = inputLen + (alignment - remainder)
}
outputChunkLen = paddedInputLen / int(k)
return outputChunkLen
}
// Encode encodes a block of data. The input is the original data. The output
// is a 2 tuple containing (k + m) chunks of erasure encoded data and the
// length of the original object.
func (e *Encoder) Encode(input []byte) ([][]byte, error) {
inputLen := len(input)
k := C.int(e.parms.K)
m := C.int(e.parms.M)
n := k + m
chunkLen := GetEncodedChunkLen(inputLen, e.parms.K)
encodedDataLen := chunkLen * int(k)
paddedDataLen := int(encodedDataLen) - inputLen
if paddedDataLen > 0 {
s := make([]byte, paddedDataLen)
// Expand with new padded blocks to the byte array
input = append(input, s...)
}
encodedParityLen := chunkLen * int(e.parms.M)
c := make([]byte, encodedParityLen)
input = append(input, c...)
// encodedOutLen := encodedDataLen + encodedParityLen
// Allocate chunks
chunks := make([][]byte, k+m)
pointers := make([]*byte, k+m)
var i int
// Add data blocks to chunks
for i = 0; i < int(k); i++ {
chunks[i] = input[i*chunkLen : (i+1)*chunkLen]
pointers[i] = &chunks[i][0]
}
for i = int(k); i < int(n); i++ {
chunks[i] = make([]byte, chunkLen)
pointers[i] = &chunks[i][0]
}
data := (**C.uint8_t)(unsafe.Pointer(&pointers[:k][0]))
coding := (**C.uint8_t)(unsafe.Pointer(&pointers[k:][0]))
C.ec_encode_data(C.int(chunkLen), k, m, e.encode_tbls, data,
coding)
return chunks, nil
}