You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
283 lines
6.7 KiB
283 lines
6.7 KiB
9 years ago
|
/**
|
||
|
* Matrix Algebra over an 8-bit Galois Field
|
||
|
*
|
||
|
* Copyright 2015, Klaus Post
|
||
|
* Copyright 2015, Backblaze, Inc.
|
||
|
*/
|
||
|
|
||
|
package reedsolomon
|
||
|
|
||
|
import (
|
||
|
"errors"
|
||
|
"fmt"
|
||
|
"strconv"
|
||
|
"strings"
|
||
|
)
|
||
|
|
||
|
// byte[row][col]
|
||
|
type matrix [][]byte
|
||
|
|
||
|
// newMatrix returns a matrix of zeros.
|
||
|
func newMatrix(rows, cols int) (matrix, error) {
|
||
|
if rows <= 0 {
|
||
|
return nil, errInvalidRowSize
|
||
|
}
|
||
|
if cols <= 0 {
|
||
|
return nil, errInvalidColSize
|
||
|
}
|
||
|
|
||
|
m := matrix(make([][]byte, rows))
|
||
|
for i := range m {
|
||
|
m[i] = make([]byte, cols)
|
||
|
}
|
||
|
return m, nil
|
||
|
}
|
||
|
|
||
|
// NewMatrixData initializes a matrix with the given row-major data.
|
||
|
// Note that data is not copied from input.
|
||
|
func newMatrixData(data [][]byte) (matrix, error) {
|
||
|
m := matrix(data)
|
||
|
err := m.Check()
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
return m, nil
|
||
|
}
|
||
|
|
||
|
// IdentityMatrix returns an identity matrix of the given size.
|
||
|
func identityMatrix(size int) (matrix, error) {
|
||
|
m, err := newMatrix(size, size)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
for i := range m {
|
||
|
m[i][i] = 1
|
||
|
}
|
||
|
return m, nil
|
||
|
}
|
||
|
|
||
|
// errInvalidRowSize will be returned if attempting to create a matrix with negative or zero row number.
|
||
|
var errInvalidRowSize = errors.New("invalid row size")
|
||
|
|
||
|
// errInvalidColSize will be returned if attempting to create a matrix with negative or zero column number.
|
||
|
var errInvalidColSize = errors.New("invalid column size")
|
||
|
|
||
|
// errColSizeMismatch is returned if the size of matrix columns mismatch.
|
||
|
var errColSizeMismatch = errors.New("column size is not the same for all rows")
|
||
|
|
||
|
func (m matrix) Check() error {
|
||
|
rows := len(m)
|
||
|
if rows <= 0 {
|
||
|
return errInvalidRowSize
|
||
|
}
|
||
|
cols := len(m[0])
|
||
|
if cols <= 0 {
|
||
|
return errInvalidColSize
|
||
|
}
|
||
|
|
||
|
for _, col := range m {
|
||
|
if len(col) != cols {
|
||
|
return errColSizeMismatch
|
||
|
}
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// String returns a human-readable string of the matrix contents.
|
||
|
//
|
||
|
// Example: [[1, 2], [3, 4]]
|
||
|
func (m matrix) String() string {
|
||
|
var rowOut []string
|
||
|
for _, row := range m {
|
||
|
var colOut []string
|
||
|
for _, col := range row {
|
||
|
colOut = append(colOut, strconv.Itoa(int(col)))
|
||
|
}
|
||
|
rowOut = append(rowOut, "["+strings.Join(colOut, ", ")+"]")
|
||
|
}
|
||
|
return "[" + strings.Join(rowOut, ", ") + "]"
|
||
|
}
|
||
|
|
||
|
// Multiply multiplies this matrix (the one on the left) by another
|
||
|
// matrix (the one on the right) and returns a new matrix with the result.
|
||
|
func (m matrix) Multiply(right matrix) (matrix, error) {
|
||
|
if len(m[0]) != len(right) {
|
||
|
return nil, fmt.Errorf("columns on left (%d) is different than rows on right (%d)", len(m[0]), len(right))
|
||
|
}
|
||
|
result, _ := newMatrix(len(m), len(right[0]))
|
||
|
for r, row := range result {
|
||
|
for c := range row {
|
||
|
var value byte
|
||
|
for i := range m[0] {
|
||
|
value ^= galMultiply(m[r][i], right[i][c])
|
||
|
}
|
||
|
result[r][c] = value
|
||
|
}
|
||
|
}
|
||
|
return result, nil
|
||
|
}
|
||
|
|
||
|
// Augment returns the concatenation of this matrix and the matrix on the right.
|
||
|
func (m matrix) Augment(right matrix) (matrix, error) {
|
||
|
if len(m) != len(right) {
|
||
|
return nil, errMatrixSize
|
||
|
}
|
||
|
|
||
|
result, _ := newMatrix(len(m), len(m[0])+len(right[0]))
|
||
|
for r, row := range m {
|
||
|
for c := range row {
|
||
|
result[r][c] = m[r][c]
|
||
|
}
|
||
|
cols := len(m[0])
|
||
|
for c := range right[0] {
|
||
|
result[r][cols+c] = right[r][c]
|
||
|
}
|
||
|
}
|
||
|
return result, nil
|
||
|
}
|
||
|
|
||
|
// errMatrixSize is returned if matrix dimensions are doesn't match.
|
||
|
var errMatrixSize = errors.New("matrix sizes does not match")
|
||
|
|
||
|
func (m matrix) SameSize(n matrix) error {
|
||
|
if len(m) != len(n) {
|
||
|
return errMatrixSize
|
||
|
}
|
||
|
for i := range m {
|
||
|
if len(m[i]) != len(n[i]) {
|
||
|
return errMatrixSize
|
||
|
}
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Returns a part of this matrix. Data is copied.
|
||
|
func (m matrix) SubMatrix(rmin, cmin, rmax, cmax int) (matrix, error) {
|
||
|
result, err := newMatrix(rmax-rmin, cmax-cmin)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
// OPTME: If used heavily, use copy function to copy slice
|
||
|
for r := rmin; r < rmax; r++ {
|
||
|
for c := cmin; c < cmax; c++ {
|
||
|
result[r-rmin][c-cmin] = m[r][c]
|
||
|
}
|
||
|
}
|
||
|
return result, nil
|
||
|
}
|
||
|
|
||
|
// SwapRows Exchanges two rows in the matrix.
|
||
|
func (m matrix) SwapRows(r1, r2 int) error {
|
||
|
if r1 < 0 || len(m) <= r1 || r2 < 0 || len(m) <= r2 {
|
||
|
return errInvalidRowSize
|
||
|
}
|
||
|
m[r2], m[r1] = m[r1], m[r2]
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// IsSquare will return true if the matrix is square
|
||
|
// and nil if the matrix is square
|
||
|
func (m matrix) IsSquare() bool {
|
||
|
if len(m) != len(m[0]) {
|
||
|
return false
|
||
|
}
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
// errSingular is returned if the matrix is singular and cannot be inversed
|
||
|
var errSingular = errors.New("matrix is singular")
|
||
|
|
||
|
// errNotSquare is returned if attempting to inverse a non-square matrix.
|
||
|
var errNotSquare = errors.New("only square matrices can be inverted")
|
||
|
|
||
|
// Invert returns the inverse of this matrix.
|
||
|
// Returns ErrSingular when the matrix is singular and doesn't have an inverse.
|
||
|
// The matrix must be square, otherwise ErrNotSquare is returned.
|
||
|
func (m matrix) Invert() (matrix, error) {
|
||
|
if !m.IsSquare() {
|
||
|
return nil, errNotSquare
|
||
|
}
|
||
|
|
||
|
size := len(m)
|
||
|
work, _ := identityMatrix(size)
|
||
|
work, _ = m.Augment(work)
|
||
|
|
||
|
err := work.gaussianElimination()
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
return work.SubMatrix(0, size, size, size*2)
|
||
|
}
|
||
|
|
||
|
func (m matrix) gaussianElimination() error {
|
||
|
rows := len(m)
|
||
|
columns := len(m[0])
|
||
|
// Clear out the part below the main diagonal and scale the main
|
||
|
// diagonal to be 1.
|
||
|
for r := 0; r < rows; r++ {
|
||
|
// If the element on the diagonal is 0, find a row below
|
||
|
// that has a non-zero and swap them.
|
||
|
if m[r][r] == 0 {
|
||
|
for rowBelow := r + 1; rowBelow < rows; rowBelow++ {
|
||
|
if m[rowBelow][r] != 0 {
|
||
|
m.SwapRows(r, rowBelow)
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// If we couldn't find one, the matrix is singular.
|
||
|
if m[r][r] == 0 {
|
||
|
return errSingular
|
||
|
}
|
||
|
// Scale to 1.
|
||
|
if m[r][r] != 1 {
|
||
|
scale := galDivide(1, m[r][r])
|
||
|
for c := 0; c < columns; c++ {
|
||
|
m[r][c] = galMultiply(m[r][c], scale)
|
||
|
}
|
||
|
}
|
||
|
// Make everything below the 1 be a 0 by subtracting
|
||
|
// a multiple of it. (Subtraction and addition are
|
||
|
// both exclusive or in the Galois field.)
|
||
|
for rowBelow := r + 1; rowBelow < rows; rowBelow++ {
|
||
|
if m[rowBelow][r] != 0 {
|
||
|
scale := m[rowBelow][r]
|
||
|
for c := 0; c < columns; c++ {
|
||
|
m[rowBelow][c] ^= galMultiply(scale, m[r][c])
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Now clear the part above the main diagonal.
|
||
|
for d := 0; d < rows; d++ {
|
||
|
for rowAbove := 0; rowAbove < d; rowAbove++ {
|
||
|
if m[rowAbove][d] != 0 {
|
||
|
scale := m[rowAbove][d]
|
||
|
for c := 0; c < columns; c++ {
|
||
|
m[rowAbove][c] ^= galMultiply(scale, m[d][c])
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Create a Vandermonde matrix, which is guaranteed to have the
|
||
|
// property that any subset of rows that forms a square matrix
|
||
|
// is invertible.
|
||
|
func vandermonde(rows, cols int) (matrix, error) {
|
||
|
result, err := newMatrix(rows, cols)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
for r, row := range result {
|
||
|
for c := range row {
|
||
|
result[r][c] = galExp(byte(r), c)
|
||
|
}
|
||
|
}
|
||
|
return result, nil
|
||
|
}
|