|
|
|
// Package erasure is a Go wrapper for the Intel Intelligent Storage
|
|
|
|
// Acceleration Library (Intel ISA-L). Intel ISA-L is a CPU optimized
|
|
|
|
// implementation of erasure coding algorithms.
|
|
|
|
//
|
|
|
|
// For more information on Intel ISA-L, please visit:
|
|
|
|
// https://01.org/intel%C2%AE-storage-acceleration-library-open-source-version
|
|
|
|
//
|
|
|
|
// Usage:
|
|
|
|
//
|
|
|
|
// Encode encodes a block of data. The input is the original data. The output
|
|
|
|
// is a 2 tuple containing (k + m) chunks of erasure encoded data and the
|
|
|
|
// length of the original object.
|
|
|
|
//
|
|
|
|
// Decode decodes 2 tuple data containing (k + m) chunks back into its original form.
|
|
|
|
// Additionally original block length should also be provided as input.
|
|
|
|
//
|
|
|
|
// Decoded data is exactly similar in length and content as the original data.
|
|
|
|
//
|
|
|
|
// Encoding data may be performed in 3 steps.
|
|
|
|
//
|
|
|
|
// 1. Create a parse set of encoder parameters
|
|
|
|
// 2. Create a new encoder
|
|
|
|
// 3. Encode data
|
|
|
|
//
|
|
|
|
// Decoding data is also performed in 3 steps.
|
|
|
|
//
|
|
|
|
// 1. Create a parse set of encoder parameters for validation
|
|
|
|
// 2. Create a new encoder
|
|
|
|
// 3. Decode data
|
|
|
|
//
|
|
|
|
// Encoder parameters contain three configurable elements:
|
|
|
|
// ParseEncoderParams(k, m, technique int) (EncoderParams, error)
|
|
|
|
// k - Number of rows in matrix
|
|
|
|
// m - Number of colums in matrix
|
|
|
|
// technique - Matrix type, can be either Cauchy (recommended) or Vandermonde
|
|
|
|
// constraints: k + m < Galois Field (2^8)
|
|
|
|
//
|
|
|
|
// Choosing right parity and matrix technique is left for application to decide.
|
|
|
|
//
|
|
|
|
// But here are the few points to keep in mind
|
|
|
|
//
|
|
|
|
// Techniques:
|
|
|
|
// - Vandermonde is most commonly used method for choosing coefficients in erasure
|
|
|
|
// encoding but does not guarantee invertable for every sub matrix.
|
|
|
|
// Users may want to adjust for k > 5. (k is data blocks)
|
|
|
|
// - Whereas Cauchy is our recommended method for choosing coefficients in erasure coding.
|
|
|
|
// Since any sub-matrix of a Cauchy matrix is invertable.
|
|
|
|
//
|
|
|
|
// Total blocks:
|
|
|
|
// - Data blocks and Parity blocks should not be greater than 'Galois Field' (2^8)
|
|
|
|
//
|
|
|
|
// Example
|
|
|
|
//
|
|
|
|
// Creating and using an encoder
|
|
|
|
// var bytes []byte
|
|
|
|
// params := erasure.ParseEncoderParams(10, 5, erasure.Cauchy)
|
|
|
|
// encoder := erasure.NewEncoder(params)
|
|
|
|
// encodedData, length := encoder.Encode(bytes)
|
|
|
|
//
|
|
|
|
// Creating and using a decoder
|
|
|
|
// var encodedData [][]byte
|
|
|
|
// var length int
|
|
|
|
// params := erasure.ParseEncoderParams(10, 5, erasure.Cauchy)
|
|
|
|
// encoder := erasure.NewEncoder(params)
|
|
|
|
// originalData, err := encoder.Decode(encodedData, length)
|
|
|
|
//
|
|
|
|
package erasure
|