You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
minio/pkg/event/target/webhook.go

262 lines
7.3 KiB

/*
* MinIO Cloud Storage, (C) 2018 MinIO, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package target
import (
"bytes"
"context"
"crypto/tls"
"encoding/json"
"errors"
"fmt"
"io"
"io/ioutil"
"net/http"
"net/url"
"os"
"path/filepath"
"time"
"github.com/minio/minio/pkg/certs"
"github.com/minio/minio/pkg/event"
xnet "github.com/minio/minio/pkg/net"
)
// Webhook constants
const (
WebhookEndpoint = "endpoint"
WebhookAuthToken = "auth_token"
WebhookQueueDir = "queue_dir"
WebhookQueueLimit = "queue_limit"
WebhookClientCert = "client_cert"
WebhookClientKey = "client_key"
EnvWebhookEnable = "MINIO_NOTIFY_WEBHOOK_ENABLE"
EnvWebhookEndpoint = "MINIO_NOTIFY_WEBHOOK_ENDPOINT"
EnvWebhookAuthToken = "MINIO_NOTIFY_WEBHOOK_AUTH_TOKEN"
EnvWebhookQueueDir = "MINIO_NOTIFY_WEBHOOK_QUEUE_DIR"
EnvWebhookQueueLimit = "MINIO_NOTIFY_WEBHOOK_QUEUE_LIMIT"
EnvWebhookClientCert = "MINIO_NOTIFY_WEBHOOK_CLIENT_CERT"
EnvWebhookClientKey = "MINIO_NOTIFY_WEBHOOK_CLIENT_KEY"
)
// WebhookArgs - Webhook target arguments.
type WebhookArgs struct {
Enable bool `json:"enable"`
Endpoint xnet.URL `json:"endpoint"`
AuthToken string `json:"authToken"`
Transport *http.Transport `json:"-"`
QueueDir string `json:"queueDir"`
QueueLimit uint64 `json:"queueLimit"`
ClientCert string `json:"clientCert"`
ClientKey string `json:"clientKey"`
}
// Validate WebhookArgs fields
func (w WebhookArgs) Validate() error {
if !w.Enable {
return nil
}
if w.Endpoint.IsEmpty() {
return errors.New("endpoint empty")
}
if w.QueueDir != "" {
if !filepath.IsAbs(w.QueueDir) {
return errors.New("queueDir path should be absolute")
}
}
if w.ClientCert != "" && w.ClientKey == "" || w.ClientCert == "" && w.ClientKey != "" {
return errors.New("cert and key must be specified as a pair")
}
return nil
}
// WebhookTarget - Webhook target.
type WebhookTarget struct {
id event.TargetID
args WebhookArgs
httpClient *http.Client
store Store
loggerOnce func(ctx context.Context, err error, id interface{}, errKind ...interface{})
}
// ID - returns target ID.
func (target WebhookTarget) ID() event.TargetID {
return target.id
}
// HasQueueStore - Checks if the queueStore has been configured for the target
func (target *WebhookTarget) HasQueueStore() bool {
return target.store != nil
}
// IsActive - Return true if target is up and active
func (target *WebhookTarget) IsActive() (bool, error) {
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
req, err := http.NewRequestWithContext(ctx, http.MethodHead, target.args.Endpoint.String(), nil)
if err != nil {
if xnet.IsNetworkOrHostDown(err) {
return false, errNotConnected
}
return false, err
}
resp, err := target.httpClient.Do(req)
if err != nil {
if xnet.IsNetworkOrHostDown(err) || errors.Is(err, context.DeadlineExceeded) {
return false, errNotConnected
}
return false, err
}
io.Copy(ioutil.Discard, resp.Body)
resp.Body.Close()
// No network failure i.e response from the target means its up
return true, nil
}
// Save - saves the events to the store if queuestore is configured, which will be replayed when the wenhook connection is active.
func (target *WebhookTarget) Save(eventData event.Event) error {
if target.store != nil {
return target.store.Put(eventData)
}
err := target.send(eventData)
if err != nil {
if xnet.IsNetworkOrHostDown(err) {
return errNotConnected
}
}
return err
}
// send - sends an event to the webhook.
func (target *WebhookTarget) send(eventData event.Event) error {
objectName, err := url.QueryUnescape(eventData.S3.Object.Key)
if err != nil {
return err
}
key := eventData.S3.Bucket.Name + "/" + objectName
data, err := json.Marshal(event.Log{EventName: eventData.EventName, Key: key, Records: []event.Event{eventData}})
if err != nil {
return err
}
req, err := http.NewRequest("POST", target.args.Endpoint.String(), bytes.NewReader(data))
if err != nil {
return err
}
if target.args.AuthToken != "" {
req.Header.Set("Authorization", "Bearer "+target.args.AuthToken)
}
req.Header.Set("Content-Type", "application/json")
resp, err := target.httpClient.Do(req)
if err != nil {
target.Close()
return err
}
defer resp.Body.Close()
io.Copy(ioutil.Discard, resp.Body)
if resp.StatusCode < 200 || resp.StatusCode > 299 {
target.Close()
return fmt.Errorf("sending event failed with %v", resp.Status)
}
return nil
}
// Send - reads an event from store and sends it to webhook.
func (target *WebhookTarget) Send(eventKey string) error {
eventData, eErr := target.store.Get(eventKey)
if eErr != nil {
// The last event key in a successful batch will be sent in the channel atmost once by the replayEvents()
// Such events will not exist and would've been already been sent successfully.
if os.IsNotExist(eErr) {
return nil
}
return eErr
}
if err := target.send(eventData); err != nil {
if xnet.IsNetworkOrHostDown(err) {
return errNotConnected
}
return err
}
// Delete the event from store.
return target.store.Del(eventKey)
}
// Close - does nothing and available for interface compatibility.
func (target *WebhookTarget) Close() error {
// Close idle connection with "keep-alive" states
target.httpClient.CloseIdleConnections()
return nil
}
// NewWebhookTarget - creates new Webhook target.
certs: refactor cert manager to support multiple certificates (#10207) This commit refactors the certificate management implementation in the `certs` package such that multiple certificates can be specified at the same time. Therefore, the following layout of the `certs/` directory is expected: ``` certs/ │ ├─ public.crt ├─ private.key ├─ CAs/ // CAs directory is ignored │ │ │ ... │ ├─ example.com/ │ │ │ ├─ public.crt │ └─ private.key └─ foobar.org/ │ ├─ public.crt └─ private.key ... ``` However, directory names like `example.com` are just for human readability/organization and don't have any meaning w.r.t whether a particular certificate is served or not. This decision is made based on the SNI sent by the client and the SAN of the certificate. *** The `Manager` will pick a certificate based on the client trying to establish a TLS connection. In particular, it looks at the client hello (i.e. SNI) to determine which host the client tries to access. If the manager can find a certificate that matches the SNI it returns this certificate to the client. However, the client may choose to not send an SNI or tries to access a server directly via IP (`https://<ip>:<port>`). In this case, we cannot use the SNI to determine which certificate to serve. However, we also should not pick "the first" certificate that would be accepted by the client (based on crypto. parameters - like a signature algorithm) because it may be an internal certificate that contains internal hostnames. We would disclose internal infrastructure details doing so. Therefore, the `Manager` returns the "default" certificate when the client does not specify an SNI. The default certificate the top-level `public.crt` - i.e. `certs/public.crt`. This approach has some consequences: - It's the operator's responsibility to ensure that the top-level `public.crt` does not disclose any information (i.e. hostnames) that are not publicly visible. However, this was the case in the past already. - Any other `public.crt` - except for the top-level one - must not contain any IP SAN. The reason for this restriction is that the Manager cannot match a SNI to an IP b/c the SNI is the server host name. The entire purpose of SNI is to indicate which host the client tries to connect to when multiple hosts run on the same IP. So, a client will not set the SNI to an IP. If we would allow IP SANs in a lower-level `public.crt` a user would expect that it is possible to connect to MinIO directly via IP address and that the MinIO server would pick "the right" certificate. However, the MinIO server cannot determine which certificate to serve, and therefore always picks the "default" one. This may lead to all sorts of confusing errors like: "It works if I use `https:instance.minio.local` but not when I use `https://10.0.2.1`. These consequences/limitations should be pointed out / explained in our docs in an appropriate way. However, the support for multiple certificates should not have any impact on how deployment with a single certificate function today. Co-authored-by: Harshavardhana <harsha@minio.io>
4 years ago
func NewWebhookTarget(ctx context.Context, id string, args WebhookArgs, loggerOnce func(ctx context.Context, err error, id interface{}, kind ...interface{}), transport *http.Transport, test bool) (*WebhookTarget, error) {
var store Store
target := &WebhookTarget{
id: event.TargetID{ID: id, Name: "webhook"},
args: args,
loggerOnce: loggerOnce,
}
if target.args.ClientCert != "" && target.args.ClientKey != "" {
certs: refactor cert manager to support multiple certificates (#10207) This commit refactors the certificate management implementation in the `certs` package such that multiple certificates can be specified at the same time. Therefore, the following layout of the `certs/` directory is expected: ``` certs/ │ ├─ public.crt ├─ private.key ├─ CAs/ // CAs directory is ignored │ │ │ ... │ ├─ example.com/ │ │ │ ├─ public.crt │ └─ private.key └─ foobar.org/ │ ├─ public.crt └─ private.key ... ``` However, directory names like `example.com` are just for human readability/organization and don't have any meaning w.r.t whether a particular certificate is served or not. This decision is made based on the SNI sent by the client and the SAN of the certificate. *** The `Manager` will pick a certificate based on the client trying to establish a TLS connection. In particular, it looks at the client hello (i.e. SNI) to determine which host the client tries to access. If the manager can find a certificate that matches the SNI it returns this certificate to the client. However, the client may choose to not send an SNI or tries to access a server directly via IP (`https://<ip>:<port>`). In this case, we cannot use the SNI to determine which certificate to serve. However, we also should not pick "the first" certificate that would be accepted by the client (based on crypto. parameters - like a signature algorithm) because it may be an internal certificate that contains internal hostnames. We would disclose internal infrastructure details doing so. Therefore, the `Manager` returns the "default" certificate when the client does not specify an SNI. The default certificate the top-level `public.crt` - i.e. `certs/public.crt`. This approach has some consequences: - It's the operator's responsibility to ensure that the top-level `public.crt` does not disclose any information (i.e. hostnames) that are not publicly visible. However, this was the case in the past already. - Any other `public.crt` - except for the top-level one - must not contain any IP SAN. The reason for this restriction is that the Manager cannot match a SNI to an IP b/c the SNI is the server host name. The entire purpose of SNI is to indicate which host the client tries to connect to when multiple hosts run on the same IP. So, a client will not set the SNI to an IP. If we would allow IP SANs in a lower-level `public.crt` a user would expect that it is possible to connect to MinIO directly via IP address and that the MinIO server would pick "the right" certificate. However, the MinIO server cannot determine which certificate to serve, and therefore always picks the "default" one. This may lead to all sorts of confusing errors like: "It works if I use `https:instance.minio.local` but not when I use `https://10.0.2.1`. These consequences/limitations should be pointed out / explained in our docs in an appropriate way. However, the support for multiple certificates should not have any impact on how deployment with a single certificate function today. Co-authored-by: Harshavardhana <harsha@minio.io>
4 years ago
manager, err := certs.NewManager(ctx, target.args.ClientCert, target.args.ClientKey, tls.LoadX509KeyPair)
if err != nil {
return target, err
}
certs: refactor cert manager to support multiple certificates (#10207) This commit refactors the certificate management implementation in the `certs` package such that multiple certificates can be specified at the same time. Therefore, the following layout of the `certs/` directory is expected: ``` certs/ │ ├─ public.crt ├─ private.key ├─ CAs/ // CAs directory is ignored │ │ │ ... │ ├─ example.com/ │ │ │ ├─ public.crt │ └─ private.key └─ foobar.org/ │ ├─ public.crt └─ private.key ... ``` However, directory names like `example.com` are just for human readability/organization and don't have any meaning w.r.t whether a particular certificate is served or not. This decision is made based on the SNI sent by the client and the SAN of the certificate. *** The `Manager` will pick a certificate based on the client trying to establish a TLS connection. In particular, it looks at the client hello (i.e. SNI) to determine which host the client tries to access. If the manager can find a certificate that matches the SNI it returns this certificate to the client. However, the client may choose to not send an SNI or tries to access a server directly via IP (`https://<ip>:<port>`). In this case, we cannot use the SNI to determine which certificate to serve. However, we also should not pick "the first" certificate that would be accepted by the client (based on crypto. parameters - like a signature algorithm) because it may be an internal certificate that contains internal hostnames. We would disclose internal infrastructure details doing so. Therefore, the `Manager` returns the "default" certificate when the client does not specify an SNI. The default certificate the top-level `public.crt` - i.e. `certs/public.crt`. This approach has some consequences: - It's the operator's responsibility to ensure that the top-level `public.crt` does not disclose any information (i.e. hostnames) that are not publicly visible. However, this was the case in the past already. - Any other `public.crt` - except for the top-level one - must not contain any IP SAN. The reason for this restriction is that the Manager cannot match a SNI to an IP b/c the SNI is the server host name. The entire purpose of SNI is to indicate which host the client tries to connect to when multiple hosts run on the same IP. So, a client will not set the SNI to an IP. If we would allow IP SANs in a lower-level `public.crt` a user would expect that it is possible to connect to MinIO directly via IP address and that the MinIO server would pick "the right" certificate. However, the MinIO server cannot determine which certificate to serve, and therefore always picks the "default" one. This may lead to all sorts of confusing errors like: "It works if I use `https:instance.minio.local` but not when I use `https://10.0.2.1`. These consequences/limitations should be pointed out / explained in our docs in an appropriate way. However, the support for multiple certificates should not have any impact on how deployment with a single certificate function today. Co-authored-by: Harshavardhana <harsha@minio.io>
4 years ago
transport.TLSClientConfig.GetClientCertificate = manager.GetClientCertificate
}
target.httpClient = &http.Client{Transport: transport}
if args.QueueDir != "" {
queueDir := filepath.Join(args.QueueDir, storePrefix+"-webhook-"+id)
store = NewQueueStore(queueDir, args.QueueLimit)
if err := store.Open(); err != nil {
target.loggerOnce(context.Background(), err, target.ID())
return target, err
}
target.store = store
}
_, err := target.IsActive()
if err != nil {
if target.store == nil || err != errNotConnected {
certs: refactor cert manager to support multiple certificates (#10207) This commit refactors the certificate management implementation in the `certs` package such that multiple certificates can be specified at the same time. Therefore, the following layout of the `certs/` directory is expected: ``` certs/ │ ├─ public.crt ├─ private.key ├─ CAs/ // CAs directory is ignored │ │ │ ... │ ├─ example.com/ │ │ │ ├─ public.crt │ └─ private.key └─ foobar.org/ │ ├─ public.crt └─ private.key ... ``` However, directory names like `example.com` are just for human readability/organization and don't have any meaning w.r.t whether a particular certificate is served or not. This decision is made based on the SNI sent by the client and the SAN of the certificate. *** The `Manager` will pick a certificate based on the client trying to establish a TLS connection. In particular, it looks at the client hello (i.e. SNI) to determine which host the client tries to access. If the manager can find a certificate that matches the SNI it returns this certificate to the client. However, the client may choose to not send an SNI or tries to access a server directly via IP (`https://<ip>:<port>`). In this case, we cannot use the SNI to determine which certificate to serve. However, we also should not pick "the first" certificate that would be accepted by the client (based on crypto. parameters - like a signature algorithm) because it may be an internal certificate that contains internal hostnames. We would disclose internal infrastructure details doing so. Therefore, the `Manager` returns the "default" certificate when the client does not specify an SNI. The default certificate the top-level `public.crt` - i.e. `certs/public.crt`. This approach has some consequences: - It's the operator's responsibility to ensure that the top-level `public.crt` does not disclose any information (i.e. hostnames) that are not publicly visible. However, this was the case in the past already. - Any other `public.crt` - except for the top-level one - must not contain any IP SAN. The reason for this restriction is that the Manager cannot match a SNI to an IP b/c the SNI is the server host name. The entire purpose of SNI is to indicate which host the client tries to connect to when multiple hosts run on the same IP. So, a client will not set the SNI to an IP. If we would allow IP SANs in a lower-level `public.crt` a user would expect that it is possible to connect to MinIO directly via IP address and that the MinIO server would pick "the right" certificate. However, the MinIO server cannot determine which certificate to serve, and therefore always picks the "default" one. This may lead to all sorts of confusing errors like: "It works if I use `https:instance.minio.local` but not when I use `https://10.0.2.1`. These consequences/limitations should be pointed out / explained in our docs in an appropriate way. However, the support for multiple certificates should not have any impact on how deployment with a single certificate function today. Co-authored-by: Harshavardhana <harsha@minio.io>
4 years ago
target.loggerOnce(ctx, err, target.ID())
return target, err
}
}
if target.store != nil && !test {
// Replays the events from the store.
certs: refactor cert manager to support multiple certificates (#10207) This commit refactors the certificate management implementation in the `certs` package such that multiple certificates can be specified at the same time. Therefore, the following layout of the `certs/` directory is expected: ``` certs/ │ ├─ public.crt ├─ private.key ├─ CAs/ // CAs directory is ignored │ │ │ ... │ ├─ example.com/ │ │ │ ├─ public.crt │ └─ private.key └─ foobar.org/ │ ├─ public.crt └─ private.key ... ``` However, directory names like `example.com` are just for human readability/organization and don't have any meaning w.r.t whether a particular certificate is served or not. This decision is made based on the SNI sent by the client and the SAN of the certificate. *** The `Manager` will pick a certificate based on the client trying to establish a TLS connection. In particular, it looks at the client hello (i.e. SNI) to determine which host the client tries to access. If the manager can find a certificate that matches the SNI it returns this certificate to the client. However, the client may choose to not send an SNI or tries to access a server directly via IP (`https://<ip>:<port>`). In this case, we cannot use the SNI to determine which certificate to serve. However, we also should not pick "the first" certificate that would be accepted by the client (based on crypto. parameters - like a signature algorithm) because it may be an internal certificate that contains internal hostnames. We would disclose internal infrastructure details doing so. Therefore, the `Manager` returns the "default" certificate when the client does not specify an SNI. The default certificate the top-level `public.crt` - i.e. `certs/public.crt`. This approach has some consequences: - It's the operator's responsibility to ensure that the top-level `public.crt` does not disclose any information (i.e. hostnames) that are not publicly visible. However, this was the case in the past already. - Any other `public.crt` - except for the top-level one - must not contain any IP SAN. The reason for this restriction is that the Manager cannot match a SNI to an IP b/c the SNI is the server host name. The entire purpose of SNI is to indicate which host the client tries to connect to when multiple hosts run on the same IP. So, a client will not set the SNI to an IP. If we would allow IP SANs in a lower-level `public.crt` a user would expect that it is possible to connect to MinIO directly via IP address and that the MinIO server would pick "the right" certificate. However, the MinIO server cannot determine which certificate to serve, and therefore always picks the "default" one. This may lead to all sorts of confusing errors like: "It works if I use `https:instance.minio.local` but not when I use `https://10.0.2.1`. These consequences/limitations should be pointed out / explained in our docs in an appropriate way. However, the support for multiple certificates should not have any impact on how deployment with a single certificate function today. Co-authored-by: Harshavardhana <harsha@minio.io>
4 years ago
eventKeyCh := replayEvents(target.store, ctx.Done(), target.loggerOnce, target.ID())
// Start replaying events from the store.
certs: refactor cert manager to support multiple certificates (#10207) This commit refactors the certificate management implementation in the `certs` package such that multiple certificates can be specified at the same time. Therefore, the following layout of the `certs/` directory is expected: ``` certs/ │ ├─ public.crt ├─ private.key ├─ CAs/ // CAs directory is ignored │ │ │ ... │ ├─ example.com/ │ │ │ ├─ public.crt │ └─ private.key └─ foobar.org/ │ ├─ public.crt └─ private.key ... ``` However, directory names like `example.com` are just for human readability/organization and don't have any meaning w.r.t whether a particular certificate is served or not. This decision is made based on the SNI sent by the client and the SAN of the certificate. *** The `Manager` will pick a certificate based on the client trying to establish a TLS connection. In particular, it looks at the client hello (i.e. SNI) to determine which host the client tries to access. If the manager can find a certificate that matches the SNI it returns this certificate to the client. However, the client may choose to not send an SNI or tries to access a server directly via IP (`https://<ip>:<port>`). In this case, we cannot use the SNI to determine which certificate to serve. However, we also should not pick "the first" certificate that would be accepted by the client (based on crypto. parameters - like a signature algorithm) because it may be an internal certificate that contains internal hostnames. We would disclose internal infrastructure details doing so. Therefore, the `Manager` returns the "default" certificate when the client does not specify an SNI. The default certificate the top-level `public.crt` - i.e. `certs/public.crt`. This approach has some consequences: - It's the operator's responsibility to ensure that the top-level `public.crt` does not disclose any information (i.e. hostnames) that are not publicly visible. However, this was the case in the past already. - Any other `public.crt` - except for the top-level one - must not contain any IP SAN. The reason for this restriction is that the Manager cannot match a SNI to an IP b/c the SNI is the server host name. The entire purpose of SNI is to indicate which host the client tries to connect to when multiple hosts run on the same IP. So, a client will not set the SNI to an IP. If we would allow IP SANs in a lower-level `public.crt` a user would expect that it is possible to connect to MinIO directly via IP address and that the MinIO server would pick "the right" certificate. However, the MinIO server cannot determine which certificate to serve, and therefore always picks the "default" one. This may lead to all sorts of confusing errors like: "It works if I use `https:instance.minio.local` but not when I use `https://10.0.2.1`. These consequences/limitations should be pointed out / explained in our docs in an appropriate way. However, the support for multiple certificates should not have any impact on how deployment with a single certificate function today. Co-authored-by: Harshavardhana <harsha@minio.io>
4 years ago
go sendEvents(target, eventKeyCh, ctx.Done(), target.loggerOnce)
}
return target, nil
}