You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1170 lines
34 KiB

/*
* (C) Copyright 2005
* Oxford Semiconductor Ltd
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,`
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/arch/clock.h>
/**
* SATA related definitions
*/
#define ATA_PORT_CTL 0
#define ATA_PORT_FEATURE 1
#define ATA_PORT_NSECT 2
#define ATA_PORT_LBAL 3
#define ATA_PORT_LBAM 4
#define ATA_PORT_LBAH 5
#define ATA_PORT_DEVICE 6
#define ATA_PORT_COMMAND 7
/* The offsets to the SATA registers */
#define SATA_ORB1_OFF 0
#define SATA_ORB2_OFF 1
#define SATA_ORB3_OFF 2
#define SATA_ORB4_OFF 3
#define SATA_ORB5_OFF 4
#define SATA_FIS_ACCESS 11
#define SATA_INT_STATUS_OFF 12 /* Read only */
#define SATA_INT_CLR_OFF 12 /* Write only */
#define SATA_INT_ENABLE_OFF 13 /* Read only */
#define SATA_INT_ENABLE_SET_OFF 13 /* Write only */
#define SATA_INT_ENABLE_CLR_OFF 14 /* Write only */
#define SATA_VERSION_OFF 15
#define SATA_CONTROL_OFF 23
#define SATA_COMMAND_OFF 24
#define SATA_PORT_CONTROL_OFF 25
#define SATA_DRIVE_CONTROL_OFF 26
/* The offsets to the link registers that are access in an asynchronous manner */
#define SATA_LINK_DATA 28
#define SATA_LINK_RD_ADDR 29
#define SATA_LINK_WR_ADDR 30
#define SATA_LINK_CONTROL 31
/* SATA interrupt status register fields */
#define SATA_INT_STATUS_EOC_RAW_BIT ( 0 + 16)
#define SATA_INT_STATUS_ERROR_BIT ( 2 + 16)
#define SATA_INT_STATUS_EOADT_RAW_BIT ( 1 + 16)
/* SATA core command register commands */
#define SATA_CMD_WRITE_TO_ORB_REGS 2
#define SATA_CMD_WRITE_TO_ORB_REGS_NO_COMMAND 4
#define SATA_CMD_BUSY_BIT 7
#define SATA_SCTL_CLR_ERR 0x00000316UL
#define SATA_LBAL_BIT 0
#define SATA_LBAM_BIT 8
#define SATA_LBAH_BIT 16
#define SATA_HOB_LBAH_BIT 24
#define SATA_DEVICE_BIT 24
#define SATA_NSECT_BIT 0
#define SATA_HOB_NSECT_BIT 8
#define SATA_LBA32_BIT 0
#define SATA_LBA40_BIT 8
#define SATA_FEATURE_BIT 16
#define SATA_COMMAND_BIT 24
#define SATA_CTL_BIT 24
/* ATA status (7) register field definitions */
#define ATA_STATUS_BSY_BIT 7
#define ATA_STATUS_DRDY_BIT 6
#define ATA_STATUS_DF_BIT 5
#define ATA_STATUS_DRQ_BIT 3
#define ATA_STATUS_ERR_BIT 0
/* ATA device (6) register field definitions */
#define ATA_DEVICE_FIXED_MASK 0xA0
#define ATA_DEVICE_DRV_BIT 4
#define ATA_DEVICE_DRV_NUM_BITS 1
#define ATA_DEVICE_LBA_BIT 6
/* ATA Command register initiated commands */
#define ATA_CMD_INIT 0x91
#define ATA_CMD_IDENT 0xEC
#define SATA_STD_ASYNC_REGS_OFF 0x20
#define SATA_SCR_STATUS 0
#define SATA_SCR_ERROR 1
#define SATA_SCR_CONTROL 2
#define SATA_SCR_ACTIVE 3
#define SATA_SCR_NOTIFICAION 4
#define SATA_BURST_BUF_FORCE_EOT_BIT 0
#define SATA_BURST_BUF_DATA_INJ_ENABLE_BIT 1
#define SATA_BURST_BUF_DIR_BIT 2
#define SATA_BURST_BUF_DATA_INJ_END_BIT 3
#define SATA_BURST_BUF_FIFO_DIS_BIT 4
#define SATA_BURST_BUF_DIS_DREQ_BIT 5
#define SATA_BURST_BUF_DREQ_BIT 6
#define SATA_OPCODE_MASK 0x3
#define SATA_DMA_CHANNEL 0
#define DMA_CTRL_STATUS (0x0)
#define DMA_BASE_SRC_ADR (0x4)
#define DMA_BASE_DST_ADR (0x8)
#define DMA_BYTE_CNT (0xC)
#define DMA_CURRENT_SRC_ADR (0x10)
#define DMA_CURRENT_DST_ADR (0x14)
#define DMA_CURRENT_BYTE_CNT (0x18)
#define DMA_INTR_ID (0x1C)
#define DMA_INTR_CLEAR_REG (DMA_CURRENT_SRC_ADR)
#define DMA_CALC_REG_ADR(channel, register) ((volatile u32*)(DMA_BASE + ((channel) << 5) + (register)))
#define DMA_CTRL_STATUS_FAIR_SHARE_ARB (1 << 0)
#define DMA_CTRL_STATUS_IN_PROGRESS (1 << 1)
#define DMA_CTRL_STATUS_SRC_DREQ_MASK (0x0000003C)
#define DMA_CTRL_STATUS_SRC_DREQ_SHIFT (2)
#define DMA_CTRL_STATUS_DEST_DREQ_MASK (0x000003C0)
#define DMA_CTRL_STATUS_DEST_DREQ_SHIFT (6)
#define DMA_CTRL_STATUS_INTR (1 << 10)
#define DMA_CTRL_STATUS_NXT_FREE (1 << 11)
#define DMA_CTRL_STATUS_RESET (1 << 12)
#define DMA_CTRL_STATUS_DIR_MASK (0x00006000)
#define DMA_CTRL_STATUS_DIR_SHIFT (13)
#define DMA_CTRL_STATUS_SRC_ADR_MODE (1 << 15)
#define DMA_CTRL_STATUS_DEST_ADR_MODE (1 << 16)
#define DMA_CTRL_STATUS_TRANSFER_MODE_A (1 << 17)
#define DMA_CTRL_STATUS_TRANSFER_MODE_B (1 << 18)
#define DMA_CTRL_STATUS_SRC_WIDTH_MASK (0x00380000)
#define DMA_CTRL_STATUS_SRC_WIDTH_SHIFT (19)
#define DMA_CTRL_STATUS_DEST_WIDTH_MASK (0x01C00000)
#define DMA_CTRL_STATUS_DEST_WIDTH_SHIFT (22)
#define DMA_CTRL_STATUS_PAUSE (1 << 25)
#define DMA_CTRL_STATUS_INTERRUPT_ENABLE (1 << 26)
#define DMA_CTRL_STATUS_SOURCE_ADDRESS_FIXED (1 << 27)
#define DMA_CTRL_STATUS_DESTINATION_ADDRESS_FIXED (1 << 28)
#define DMA_CTRL_STATUS_STARVE_LOW_PRIORITY (1 << 29)
#define DMA_CTRL_STATUS_INTR_CLEAR_ENABLE (1 << 30)
#define DMA_BYTE_CNT_MASK ((1 << 21) - 1)
#define DMA_BYTE_CNT_WR_EOT_MASK (1 << 30)
#define DMA_BYTE_CNT_RD_EOT_MASK (1 << 31)
#define DMA_BYTE_CNT_BURST_MASK (1 << 28)
#define MAKE_FIELD(value, num_bits, bit_num) (((value) & ((1 << (num_bits)) - 1)) << (bit_num))
typedef enum oxnas_dma_mode {
OXNAS_DMA_MODE_FIXED, OXNAS_DMA_MODE_INC
} oxnas_dma_mode_t;
typedef enum oxnas_dma_direction {
OXNAS_DMA_TO_DEVICE, OXNAS_DMA_FROM_DEVICE
} oxnas_dma_direction_t;
/* The available buses to which the DMA controller is attached */
typedef enum oxnas_dma_transfer_bus {
OXNAS_DMA_SIDE_A, OXNAS_DMA_SIDE_B
} oxnas_dma_transfer_bus_t;
/* Direction of data flow between the DMA controller's pair of interfaces */
typedef enum oxnas_dma_transfer_direction {
OXNAS_DMA_A_TO_A, OXNAS_DMA_B_TO_A, OXNAS_DMA_A_TO_B, OXNAS_DMA_B_TO_B
} oxnas_dma_transfer_direction_t;
/* The available data widths */
typedef enum oxnas_dma_transfer_width {
OXNAS_DMA_TRANSFER_WIDTH_8BITS,
OXNAS_DMA_TRANSFER_WIDTH_16BITS,
OXNAS_DMA_TRANSFER_WIDTH_32BITS
} oxnas_dma_transfer_width_t;
/* The mode of the DMA transfer */
typedef enum oxnas_dma_transfer_mode {
OXNAS_DMA_TRANSFER_MODE_SINGLE, OXNAS_DMA_TRANSFER_MODE_BURST
} oxnas_dma_transfer_mode_t;
/* The available transfer targets */
typedef enum oxnas_dma_dreq {
OXNAS_DMA_DREQ_SATA = 0, OXNAS_DMA_DREQ_MEMORY = 15
} oxnas_dma_dreq_t;
typedef struct oxnas_dma_device_settings {
unsigned long address_;
unsigned fifo_size_; // Chained transfers must take account of FIFO offset at end of previous transfer
unsigned char dreq_;
unsigned read_eot_ :1;
unsigned read_final_eot_ :1;
unsigned write_eot_ :1;
unsigned write_final_eot_ :1;
unsigned bus_ :1;
unsigned width_ :2;
unsigned transfer_mode_ :1;
unsigned address_mode_ :1;
unsigned address_really_fixed_ :1;
} oxnas_dma_device_settings_t;
static const int MAX_NO_ERROR_LOOPS = 100000; /* 1 second in units of 10uS */
static const int MAX_DMA_XFER_LOOPS = 300000; /* 30 seconds in units of 100uS */
static const int MAX_DMA_ABORT_LOOPS = 10000; /* 0.1 second in units of 10uS */
static const int MAX_SRC_READ_LOOPS = 10000; /* 0.1 second in units of 10uS */
static const int MAX_SRC_WRITE_LOOPS = 10000; /* 0.1 second in units of 10uS */
static const int MAX_NOT_BUSY_LOOPS = 10000; /* 1 second in units of 100uS */
/* The internal SATA drive on which we should attempt to find partitions */
static volatile u32* sata_regs_base[2] = { (volatile u32*) SATA_0_REGS_BASE,
(volatile u32*) SATA_1_REGS_BASE,
};
static u32 wr_sata_orb1[2] = { 0, 0 };
static u32 wr_sata_orb2[2] = { 0, 0 };
static u32 wr_sata_orb3[2] = { 0, 0 };
static u32 wr_sata_orb4[2] = { 0, 0 };
#ifdef CONFIG_LBA48
/* need keeping a record of NSECT LBAL LBAM LBAH ide_outb values for lba48 support */
#define OUT_HISTORY_BASE ATA_PORT_NSECT
#define OUT_HISTORY_MAX ATA_PORT_LBAH
static unsigned char out_history[2][OUT_HISTORY_MAX - OUT_HISTORY_BASE + 1] = {};
#endif
static oxnas_dma_device_settings_t oxnas_sata_dma_settings = { .address_ =
SATA_DATA_BASE, .fifo_size_ = 16, .dreq_ = OXNAS_DMA_DREQ_SATA,
.read_eot_ = 0, .read_final_eot_ = 1, .write_eot_ = 0,
.write_final_eot_ = 1, .bus_ = OXNAS_DMA_SIDE_B, .width_ =
OXNAS_DMA_TRANSFER_WIDTH_32BITS, .transfer_mode_ =
OXNAS_DMA_TRANSFER_MODE_BURST, .address_mode_ =
OXNAS_DMA_MODE_FIXED, .address_really_fixed_ = 0 };
oxnas_dma_device_settings_t oxnas_ram_dma_settings = { .address_ = 0,
.fifo_size_ = 0, .dreq_ = OXNAS_DMA_DREQ_MEMORY, .read_eot_ = 1,
.read_final_eot_ = 1, .write_eot_ = 1, .write_final_eot_ = 1,
.bus_ = OXNAS_DMA_SIDE_A, .width_ =
OXNAS_DMA_TRANSFER_WIDTH_32BITS, .transfer_mode_ =
OXNAS_DMA_TRANSFER_MODE_BURST, .address_mode_ =
OXNAS_DMA_MODE_FIXED, .address_really_fixed_ = 1 };
static void xfer_wr_shadow_to_orbs(int device)
{
*(sata_regs_base[device] + SATA_ORB1_OFF) = wr_sata_orb1[device];
*(sata_regs_base[device] + SATA_ORB2_OFF) = wr_sata_orb2[device];
*(sata_regs_base[device] + SATA_ORB3_OFF) = wr_sata_orb3[device];
*(sata_regs_base[device] + SATA_ORB4_OFF) = wr_sata_orb4[device];
}
static inline void device_select(int device)
{
/* master/slave has no meaning to SATA core */
}
static int disk_present[CONFIG_SYS_IDE_MAXDEVICE];
#include <ata.h>
unsigned char ide_inb(int device, int port)
{
unsigned char val = 0;
/* Only permit accesses to disks found to be present during ide_preinit() */
if (!disk_present[device]) {
return ATA_STAT_FAULT;
}
device_select(device);
switch (port) {
case ATA_PORT_CTL:
val = (*(sata_regs_base[device] + SATA_ORB4_OFF)
& (0xFFUL << SATA_CTL_BIT)) >> SATA_CTL_BIT;
break;
case ATA_PORT_FEATURE:
val = (*(sata_regs_base[device] + SATA_ORB2_OFF)
& (0xFFUL << SATA_FEATURE_BIT)) >> SATA_FEATURE_BIT;
break;
case ATA_PORT_NSECT:
val = (*(sata_regs_base[device] + SATA_ORB2_OFF)
& (0xFFUL << SATA_NSECT_BIT)) >> SATA_NSECT_BIT;
break;
case ATA_PORT_LBAL:
val = (*(sata_regs_base[device] + SATA_ORB3_OFF)
& (0xFFUL << SATA_LBAL_BIT)) >> SATA_LBAL_BIT;
break;
case ATA_PORT_LBAM:
val = (*(sata_regs_base[device] + SATA_ORB3_OFF)
& (0xFFUL << SATA_LBAM_BIT)) >> SATA_LBAM_BIT;
break;
case ATA_PORT_LBAH:
val = (*(sata_regs_base[device] + SATA_ORB3_OFF)
& (0xFFUL << SATA_LBAH_BIT)) >> SATA_LBAH_BIT;
break;
case ATA_PORT_DEVICE:
val = (*(sata_regs_base[device] + SATA_ORB3_OFF)
& (0xFFUL << SATA_HOB_LBAH_BIT)) >> SATA_HOB_LBAH_BIT;
val |= (*(sata_regs_base[device] + SATA_ORB1_OFF)
& (0xFFUL << SATA_DEVICE_BIT)) >> SATA_DEVICE_BIT;
break;
case ATA_PORT_COMMAND:
val = (*(sata_regs_base[device] + SATA_ORB2_OFF)
& (0xFFUL << SATA_COMMAND_BIT)) >> SATA_COMMAND_BIT;
val |= ATA_STAT_DRQ;
break;
default:
printf("ide_inb() Unknown port = %d\n", port);
break;
}
// printf("inb: %d:%01x => %02x\n", device, port, val);
return val;
}
/**
* Possible that ATA status will not become no-error, so must have timeout
* @returns An int which is zero on error
*/
static inline int wait_no_error(int device)
{
int status = 0;
/* Check for ATA core error */
if (*(sata_regs_base[device] + SATA_INT_STATUS_OFF)
& (1 << SATA_INT_STATUS_ERROR_BIT)) {
printf("wait_no_error() SATA core flagged error\n");
} else {
int loops = MAX_NO_ERROR_LOOPS;
do {
/* Check for ATA device error */
if (!(ide_inb(device, ATA_PORT_COMMAND)
& (1 << ATA_STATUS_ERR_BIT))) {
status = 1;
break;
}
udelay(10);
} while (--loops);
if (!loops) {
printf("wait_no_error() Timed out of wait for SATA no-error condition\n");
}
}
return status;
}
/**
* Expect SATA command to always finish, perhaps with error
* @returns An int which is zero on error
*/
static inline int wait_sata_command_not_busy(int device)
{
/* Wait for data to be available */
int status = 0;
int loops = MAX_NOT_BUSY_LOOPS;
do {
if (!(*(sata_regs_base[device] + SATA_COMMAND_OFF)
& (1 << SATA_CMD_BUSY_BIT))) {
status = 1;
break;
}
udelay(100);
} while (--loops);
if (!loops) {
printf("wait_sata_command_not_busy() Timed out of wait for SATA command to finish\n");
}
return status;
}
void ide_outb(int device, int port, unsigned char val)
{
typedef enum send_method {
SEND_NONE, SEND_SIMPLE, SEND_CMD, SEND_CTL,
} send_method_t;
/* Only permit accesses to disks found to be present during ide_preinit() */
if (!disk_present[device]) {
return;
}
// printf("outb: %d:%01x <= %02x\n", device, port, val);
device_select(device);
#ifdef CONFIG_LBA48
if (port >= OUT_HISTORY_BASE && port <= OUT_HISTORY_MAX) {
out_history[0][port - OUT_HISTORY_BASE] =
out_history[1][port - OUT_HISTORY_BASE];
out_history[1][port - OUT_HISTORY_BASE] = val;
}
#endif
send_method_t send_regs = SEND_NONE;
switch (port) {
case ATA_PORT_CTL:
wr_sata_orb4[device] &= ~(0xFFUL << SATA_CTL_BIT);
wr_sata_orb4[device] |= (val << SATA_CTL_BIT);
send_regs = SEND_CTL;
break;
case ATA_PORT_FEATURE:
wr_sata_orb2[device] &= ~(0xFFUL << SATA_FEATURE_BIT);
wr_sata_orb2[device] |= (val << SATA_FEATURE_BIT);
send_regs = SEND_SIMPLE;
break;
case ATA_PORT_NSECT:
wr_sata_orb2[device] &= ~(0xFFUL << SATA_NSECT_BIT);
wr_sata_orb2[device] |= (val << SATA_NSECT_BIT);
send_regs = SEND_SIMPLE;
break;
case ATA_PORT_LBAL:
wr_sata_orb3[device] &= ~(0xFFUL << SATA_LBAL_BIT);
wr_sata_orb3[device] |= (val << SATA_LBAL_BIT);
send_regs = SEND_SIMPLE;
break;
case ATA_PORT_LBAM:
wr_sata_orb3[device] &= ~(0xFFUL << SATA_LBAM_BIT);
wr_sata_orb3[device] |= (val << SATA_LBAM_BIT);
send_regs = SEND_SIMPLE;
break;
case ATA_PORT_LBAH:
wr_sata_orb3[device] &= ~(0xFFUL << SATA_LBAH_BIT);
wr_sata_orb3[device] |= (val << SATA_LBAH_BIT);
send_regs = SEND_SIMPLE;
break;
case ATA_PORT_DEVICE:
wr_sata_orb1[device] &= ~(0xFFUL << SATA_DEVICE_BIT);
wr_sata_orb1[device] |= (val << SATA_DEVICE_BIT);
send_regs = SEND_SIMPLE;
break;
case ATA_PORT_COMMAND:
wr_sata_orb2[device] &= ~(0xFFUL << SATA_COMMAND_BIT);
wr_sata_orb2[device] |= (val << SATA_COMMAND_BIT);
send_regs = SEND_CMD;
#ifdef CONFIG_LBA48
if (val == ATA_CMD_READ_EXT || val == ATA_CMD_WRITE_EXT)
{
/* fill high bytes of LBA48 && NSECT */
wr_sata_orb2[device] &= ~(0xFFUL << SATA_HOB_NSECT_BIT);
wr_sata_orb2[device] |=
(out_history[0][ATA_PORT_NSECT - OUT_HISTORY_BASE] << SATA_HOB_NSECT_BIT);
wr_sata_orb3[device] &= ~(0xFFUL << SATA_HOB_LBAH_BIT);
wr_sata_orb3[device] |=
(out_history[0][ATA_PORT_LBAL - OUT_HISTORY_BASE] << SATA_HOB_LBAH_BIT);
wr_sata_orb4[device] &= ~(0xFFUL << SATA_LBA32_BIT);
wr_sata_orb4[device] |=
(out_history[0][ATA_PORT_LBAM - OUT_HISTORY_BASE] << SATA_LBA32_BIT);
wr_sata_orb4[device] &= ~(0xFFUL << SATA_LBA40_BIT);
wr_sata_orb4[device] |=
(out_history[0][ATA_PORT_LBAH - OUT_HISTORY_BASE] << SATA_LBA40_BIT);
}
#endif
break;
default:
printf("ide_outb() Unknown port = %d\n", port);
}
u32 command;
switch (send_regs) {
case SEND_CMD:
wait_sata_command_not_busy(device);
command = *(sata_regs_base[device] + SATA_COMMAND_OFF);
command &= ~SATA_OPCODE_MASK;
command |= SATA_CMD_WRITE_TO_ORB_REGS;
xfer_wr_shadow_to_orbs(device);
wait_sata_command_not_busy(device);
*(sata_regs_base[device] + SATA_COMMAND_OFF) = command;
if (!wait_no_error(device)) {
printf("ide_outb() Wait for ATA no-error timed-out\n");
}
break;
case SEND_CTL:
wait_sata_command_not_busy(device);
command = *(sata_regs_base[device] + SATA_COMMAND_OFF);
command &= ~SATA_OPCODE_MASK;
command |= SATA_CMD_WRITE_TO_ORB_REGS_NO_COMMAND;
xfer_wr_shadow_to_orbs(device);
wait_sata_command_not_busy(device);
*(sata_regs_base[device] + SATA_COMMAND_OFF) = command;
if (!wait_no_error(device)) {
printf("ide_outb() Wait for ATA no-error timed-out\n");
}
break;
default:
break;
}
}
static u32 encode_start(u32 ctrl_status)
{
return ctrl_status & ~DMA_CTRL_STATUS_PAUSE;
}
/* start a paused DMA transfer in channel 0 of the SATA DMA core */
static void dma_start(void)
{
unsigned int reg;
reg = readl(SATA_DMA_REGS_BASE + DMA_CTRL_STATUS);
reg = encode_start(reg);
writel(reg, SATA_DMA_REGS_BASE + DMA_CTRL_STATUS);
}
static unsigned long encode_control_status(
oxnas_dma_device_settings_t* src_settings,
oxnas_dma_device_settings_t* dst_settings)
{
unsigned long ctrl_status;
oxnas_dma_transfer_direction_t direction;
ctrl_status = DMA_CTRL_STATUS_PAUSE; // Paused
ctrl_status |= DMA_CTRL_STATUS_FAIR_SHARE_ARB; // High priority
ctrl_status |= (src_settings->dreq_ << DMA_CTRL_STATUS_SRC_DREQ_SHIFT); // Dreq
ctrl_status |= (dst_settings->dreq_ << DMA_CTRL_STATUS_DEST_DREQ_SHIFT); // Dreq
ctrl_status &= ~DMA_CTRL_STATUS_RESET; // !RESET
// Use new interrupt clearing register
ctrl_status |= DMA_CTRL_STATUS_INTR_CLEAR_ENABLE;
// Setup the transfer direction and burst/single mode for the two DMA busses
if (src_settings->bus_ == OXNAS_DMA_SIDE_A) {
// Set the burst/single mode for bus A based on src device's settings
if (src_settings->transfer_mode_
== OXNAS_DMA_TRANSFER_MODE_BURST) {
ctrl_status |= DMA_CTRL_STATUS_TRANSFER_MODE_A;
} else {
ctrl_status &= ~DMA_CTRL_STATUS_TRANSFER_MODE_A;
}
if (dst_settings->bus_ == OXNAS_DMA_SIDE_A) {
direction = OXNAS_DMA_A_TO_A;
} else {
direction = OXNAS_DMA_A_TO_B;
// Set the burst/single mode for bus B based on dst device's settings
if (dst_settings->transfer_mode_
== OXNAS_DMA_TRANSFER_MODE_BURST) {
ctrl_status |= DMA_CTRL_STATUS_TRANSFER_MODE_B;
} else {
ctrl_status &= ~DMA_CTRL_STATUS_TRANSFER_MODE_B;
}
}
} else {
// Set the burst/single mode for bus B based on src device's settings
if (src_settings->transfer_mode_
== OXNAS_DMA_TRANSFER_MODE_BURST) {
ctrl_status |= DMA_CTRL_STATUS_TRANSFER_MODE_B;
} else {
ctrl_status &= ~DMA_CTRL_STATUS_TRANSFER_MODE_B;
}
if (dst_settings->bus_ == OXNAS_DMA_SIDE_A) {
direction = OXNAS_DMA_B_TO_A;
// Set the burst/single mode for bus A based on dst device's settings
if (dst_settings->transfer_mode_
== OXNAS_DMA_TRANSFER_MODE_BURST) {
ctrl_status |= DMA_CTRL_STATUS_TRANSFER_MODE_A;
} else {
ctrl_status &= ~DMA_CTRL_STATUS_TRANSFER_MODE_A;
}
} else {
direction = OXNAS_DMA_B_TO_B;
}
}
ctrl_status |= (direction << DMA_CTRL_STATUS_DIR_SHIFT);
// Setup source address mode fixed or increment
if (src_settings->address_mode_ == OXNAS_DMA_MODE_FIXED) {
// Fixed address
ctrl_status &= ~(DMA_CTRL_STATUS_SRC_ADR_MODE);
// Set up whether fixed address is _really_ fixed
if (src_settings->address_really_fixed_) {
ctrl_status |= DMA_CTRL_STATUS_SOURCE_ADDRESS_FIXED;
} else {
ctrl_status &= ~DMA_CTRL_STATUS_SOURCE_ADDRESS_FIXED;
}
} else {
// Incrementing address
ctrl_status |= DMA_CTRL_STATUS_SRC_ADR_MODE;
ctrl_status &= ~DMA_CTRL_STATUS_SOURCE_ADDRESS_FIXED;
}
// Setup destination address mode fixed or increment
if (dst_settings->address_mode_ == OXNAS_DMA_MODE_FIXED) {
// Fixed address
ctrl_status &= ~(DMA_CTRL_STATUS_DEST_ADR_MODE);
// Set up whether fixed address is _really_ fixed
if (dst_settings->address_really_fixed_) {
ctrl_status |=
DMA_CTRL_STATUS_DESTINATION_ADDRESS_FIXED;
} else {
ctrl_status &=
~DMA_CTRL_STATUS_DESTINATION_ADDRESS_FIXED;
}
} else {
// Incrementing address
ctrl_status |= DMA_CTRL_STATUS_DEST_ADR_MODE;
ctrl_status &= ~DMA_CTRL_STATUS_DESTINATION_ADDRESS_FIXED;
}
// Set up the width of the transfers on the DMA buses
ctrl_status |=
(src_settings->width_ << DMA_CTRL_STATUS_SRC_WIDTH_SHIFT);
ctrl_status |=
(dst_settings->width_ << DMA_CTRL_STATUS_DEST_WIDTH_SHIFT);
// Setup the priority arbitration scheme
ctrl_status &= ~DMA_CTRL_STATUS_STARVE_LOW_PRIORITY; // !Starve low priority
return ctrl_status;
}
static u32 encode_final_eot(oxnas_dma_device_settings_t* src_settings,
oxnas_dma_device_settings_t* dst_settings,
unsigned long length)
{
// Write the length, with EOT configuration for a final transfer
unsigned long encoded = length;
if (dst_settings->write_final_eot_) {
encoded |= DMA_BYTE_CNT_WR_EOT_MASK;
} else {
encoded &= ~DMA_BYTE_CNT_WR_EOT_MASK;
}
if (src_settings->read_final_eot_) {
encoded |= DMA_BYTE_CNT_RD_EOT_MASK;
} else {
encoded &= ~DMA_BYTE_CNT_RD_EOT_MASK;
}
/* if((src_settings->transfer_mode_) ||
(src_settings->transfer_mode_)) {
encoded |= DMA_BYTE_CNT_BURST_MASK;
} else {
encoded &= ~DMA_BYTE_CNT_BURST_MASK;
}*/
return encoded;
}
static void dma_start_write(const ulong* buffer, int num_bytes)
{
// Assemble complete memory settings
oxnas_dma_device_settings_t mem_settings = oxnas_ram_dma_settings;
mem_settings.address_ = (unsigned long) buffer;
mem_settings.address_mode_ = OXNAS_DMA_MODE_INC;
writel(encode_control_status(&mem_settings, &oxnas_sata_dma_settings),
SATA_DMA_REGS_BASE + DMA_CTRL_STATUS);
writel(mem_settings.address_, SATA_DMA_REGS_BASE + DMA_BASE_SRC_ADR);
writel(oxnas_sata_dma_settings.address_,
SATA_DMA_REGS_BASE + DMA_BASE_DST_ADR);
writel(encode_final_eot(&mem_settings, &oxnas_sata_dma_settings,
num_bytes),
SATA_DMA_REGS_BASE + DMA_BYTE_CNT);
dma_start();
}
static void dma_start_read(ulong* buffer, int num_bytes)
{
// Assemble complete memory settings
oxnas_dma_device_settings_t mem_settings = oxnas_ram_dma_settings;
mem_settings.address_ = (unsigned long) buffer;
mem_settings.address_mode_ = OXNAS_DMA_MODE_INC;
writel(encode_control_status(&oxnas_sata_dma_settings, &mem_settings),
SATA_DMA_REGS_BASE + DMA_CTRL_STATUS);
writel(oxnas_sata_dma_settings.address_,
SATA_DMA_REGS_BASE + DMA_BASE_SRC_ADR);
writel(mem_settings.address_, SATA_DMA_REGS_BASE + DMA_BASE_DST_ADR);
writel(encode_final_eot(&oxnas_sata_dma_settings, &mem_settings,
num_bytes),
SATA_DMA_REGS_BASE + DMA_BYTE_CNT);
dma_start();
}
static inline int dma_busy(void)
{
return readl(SATA_DMA_REGS_BASE + DMA_CTRL_STATUS)
& DMA_CTRL_STATUS_IN_PROGRESS;
}
static int wait_dma_not_busy(int device)
{
unsigned int cleanup_required = 0;
/* Poll for DMA completion */
int loops = MAX_DMA_XFER_LOOPS;
do {
if (!dma_busy()) {
break;
}
udelay(100);
} while (--loops);
if (!loops) {
printf("wait_dma_not_busy() Timed out of wait for DMA not busy\n");
cleanup_required = 1;
}
if (cleanup_required) {
/* Abort DMA to make sure it has finished. */
unsigned int ctrl_status = readl(
SATA_DMA_CHANNEL + DMA_CTRL_STATUS);
ctrl_status |= DMA_CTRL_STATUS_RESET;
writel(ctrl_status, SATA_DMA_CHANNEL + DMA_CTRL_STATUS);
// Wait for the channel to become idle - should be quick as should
// finish after the next AHB single or burst transfer
loops = MAX_DMA_ABORT_LOOPS;
do {
if (!dma_busy()) {
break;
}
udelay(10);
} while (--loops);
if (!loops) {
printf("wait_dma_not_busy() Timed out of wait for DMA channel abort\n");
} else {
/* Successfully cleanup the DMA channel */
cleanup_required = 0;
}
// Deassert reset for the channel
ctrl_status = readl(SATA_DMA_CHANNEL + DMA_CTRL_STATUS);
ctrl_status &= ~DMA_CTRL_STATUS_RESET;
writel(ctrl_status, SATA_DMA_CHANNEL + DMA_CTRL_STATUS);
}
return !cleanup_required;
}
/**
* Possible that ATA status will not become not-busy, so must have timeout
*/
static unsigned int wait_not_busy(int device, unsigned long timeout_secs)
{
int busy = 1;
unsigned long loops = (timeout_secs * 1000) / 50;
do {
// Test the ATA status register BUSY flag
if (!((*(sata_regs_base[device] + SATA_ORB2_OFF)
>> SATA_COMMAND_BIT) & (1UL << ATA_STATUS_BSY_BIT))) {
/* Not busy, so stop polling */
busy = 0;
break;
}
// Wait for 50mS before sampling ATA status register again
udelay(50000);
} while (--loops);
return busy;
}
void ide_output_data(int device, const ulong *sect_buf, int words)
{
/* Only permit accesses to disks found to be present during ide_preinit() */
if (!disk_present[device]) {
return;
}
/* Select the required internal SATA drive */
device_select(device);
/* Start the DMA channel sending data from the passed buffer to the SATA core */
dma_start_write(sect_buf, words << 2);
/* Don't know why we need this delay, but without it the wait for DMA not
busy times soemtimes out, e.g. when saving environment to second disk */
udelay(1000);
/* Wait for DMA to finish */
if (!wait_dma_not_busy(device)) {
printf("Timed out of wait for DMA channel for SATA device %d to have in-progress clear\n",
device);
}
/* Sata core should finish after DMA */
if (wait_not_busy(device, 30)) {
printf("Timed out of wait for SATA device %d to have BUSY clear\n",
device);
}
if (!wait_no_error(device)) {
printf("oxnas_sata_output_data() Wait for ATA no-error timed-out\n");
}
}
#define SATA_DM_DBG1 (SATA_HOST_REGS_BASE + 0)
#define SATA_DATACOUNT_PORT0 (SATA_HOST_REGS_BASE + 0x10)
#define SATA_DATACOUNT_PORT1 (SATA_HOST_REGS_BASE + 0x14)
#define SATA_DATA_MUX_RAM0 (SATA_HOST_REGS_BASE + 0x8000)
#define SATA_DATA_MUX_RAM1 (SATA_HOST_REGS_BASE + 0xA000)
/* Sata core debug1 register bits */
#define SATA_CORE_PORT0_DATA_DIR_BIT 20
#define SATA_CORE_PORT1_DATA_DIR_BIT 21
#define SATA_CORE_PORT0_DATA_DIR (1 << SATA_CORE_PORT0_DATA_DIR_BIT)
#define SATA_CORE_PORT1_DATA_DIR (1 << SATA_CORE_PORT1_DATA_DIR_BIT)
/**
* Ref bug-6320
*
* This code is a work around for a DMA hardware bug that will repeat the
* penultimate 8-bytes on some reads. This code will check that the amount
* of data transferred is a multiple of 512 bytes, if not the in it will
* fetch the correct data from a buffer in the SATA core and copy it into
* memory.
*
*/
static void sata_bug_6320_workaround(int port, ulong *candidate)
{
int is_read;
int quads_transferred;
int remainder;
int sector_quads_remaining;
/* Only want to apply fix to reads */
is_read = !(*((unsigned long*) SATA_DM_DBG1)
& (port ? SATA_CORE_PORT1_DATA_DIR : SATA_CORE_PORT0_DATA_DIR));
/* Check for an incomplete transfer, i.e. not a multiple of 512 bytes
transferred (datacount_port register counts quads transferred) */
quads_transferred = *((unsigned long*) (
port ? SATA_DATACOUNT_PORT1 : SATA_DATACOUNT_PORT0));
remainder = quads_transferred & 0x7f;
sector_quads_remaining = remainder ? (0x80 - remainder) : 0;
if (is_read && (sector_quads_remaining == 2)) {
debug("SATA read fixup, only transfered %d quads, "
"sector_quads_remaining %d, port %d\n",
quads_transferred, sector_quads_remaining, port);
int total_len = ATA_SECT_SIZE;
ulong *sata_data_ptr = (void*) (
port ? SATA_DATA_MUX_RAM1 : SATA_DATA_MUX_RAM0)
+ ((total_len - 8) % 2048);
*candidate = *sata_data_ptr;
*(candidate + 1) = *(sata_data_ptr + 1);
}
}
void ide_input_data(int device, ulong *sect_buf, int words)
{
/* Only permit accesses to disks found to be present during ide_preinit() */
if (!disk_present[device]) {
return;
}
/* Select the required internal SATA drive */
device_select(device);
/* Start the DMA channel receiving data from the SATA core into the passed buffer */
dma_start_read(sect_buf, words << 2);
/* Sata core should finish before DMA */
if (wait_not_busy(device, 30)) {
printf("Timed out of wait for SATA device %d to have BUSY clear\n",
device);
}
if (!wait_no_error(device)) {
printf("oxnas_sata_output_data() Wait for ATA no-error timed-out\n");
}
/* Wait for DMA to finish */
if (!wait_dma_not_busy(device)) {
printf("Timed out of wait for DMA channel for SATA device %d to have in-progress clear\n",
device);
}
if (words == ATA_SECTORWORDS)
sata_bug_6320_workaround(device, sect_buf + words - 2);
}
static u32 scr_read(int device, unsigned int sc_reg)
{
/* Setup adr of required register. std regs start eight into async region */
*(sata_regs_base[device] + SATA_LINK_RD_ADDR) = sc_reg
* 4+ SATA_STD_ASYNC_REGS_OFF;
/* Wait for data to be available */
int loops = MAX_SRC_READ_LOOPS;
do {
if (*(sata_regs_base[device] + SATA_LINK_CONTROL) & 1UL) {
break;
}
udelay(10);
} while (--loops);
if (!loops) {
printf("scr_read() Timed out of wait for read completion\n");
}
/* Read the data from the async register */
return *(sata_regs_base[device] + SATA_LINK_DATA);
}
static void scr_write(int device, unsigned int sc_reg, u32 val)
{
/* Setup the data for the write */
*(sata_regs_base[device] + SATA_LINK_DATA) = val;
/* Setup adr of required register. std regs start eight into async region */
*(sata_regs_base[device] + SATA_LINK_WR_ADDR) = sc_reg
* 4+ SATA_STD_ASYNC_REGS_OFF;
/* Wait for data to be written */
int loops = MAX_SRC_WRITE_LOOPS;
do {
if (*(sata_regs_base[device] + SATA_LINK_CONTROL) & 1UL) {
break;
}
udelay(10);
} while (--loops);
if (!loops) {
printf("scr_write() Timed out of wait for write completion\n");
}
}
extern void workaround5458(void);
#define PHY_LOOP_COUNT 25 /* Wait for upto 5 seconds for PHY to be found */
#define LOS_AND_TX_LVL 0x2988
#define TX_ATTEN 0x55629
static int phy_reset(int device)
{
int phy_status = 0;
int loops = 0;
scr_write(device, (0x60 - SATA_STD_ASYNC_REGS_OFF) / 4, LOS_AND_TX_LVL);
scr_write(device, (0x70 - SATA_STD_ASYNC_REGS_OFF) / 4, TX_ATTEN);
/* limit it to Gen-1 SATA (1.5G) */
scr_write(device, SATA_SCR_CONTROL, 0x311); /* Issue phy wake & core reset */
scr_read(device, SATA_SCR_STATUS); /* Dummy read; flush */
udelay(1000);
scr_write(device, SATA_SCR_CONTROL, 0x310); /* Issue phy wake & clear core reset */
/* Wait for upto 5 seconds for PHY to become ready */
do {
udelay(200000);
if ((scr_read(device, SATA_SCR_STATUS) & 0xf) == 3) {
scr_write(device, SATA_SCR_ERROR, ~0);
phy_status = 1;
break;
}
//printf("No SATA PHY found status:0x%x\n", scr_read(device, SATA_SCR_STATUS));
} while (++loops < PHY_LOOP_COUNT);
if (phy_status) {
udelay(500000); /* wait half a second */
}
return phy_status;
}
#define FIS_LOOP_COUNT 25 /* Wait for upto 5 seconds for FIS to be received */
static int wait_FIS(int device)
{
int status = 0;
int loops = 0;
do {
udelay(200000);
if (ide_inb(device, ATA_PORT_NSECT) > 0) {
status = 1;
break;
}
} while (++loops < FIS_LOOP_COUNT);
return status;
}
#define SATA_PHY_ASIC_STAT (0x44900000)
#define SATA_PHY_ASIC_DATA (0x44900004)
/**
* initialise functions and macros for ASIC implementation
*/
#define PH_GAIN 2
#define FR_GAIN 3
#define PH_GAIN_OFFSET 6
#define FR_GAIN_OFFSET 8
#define PH_GAIN_MASK (0x3 << PH_GAIN_OFFSET)
#define FR_GAIN_MASK (0x3 << FR_GAIN_OFFSET)
#define USE_INT_SETTING (1<<5)
#define CR_READ_ENABLE (1<<16)
#define CR_WRITE_ENABLE (1<<17)
#define CR_CAP_DATA (1<<18)
static void wait_cr_ack(void)
{
while ((readl(SATA_PHY_ASIC_STAT) >> 16) & 0x1f)
/* wait for an ack bit to be set */;
}
static unsigned short read_cr(unsigned short address)
{
writel(address, SATA_PHY_ASIC_STAT);
wait_cr_ack();
writel(CR_READ_ENABLE, SATA_PHY_ASIC_DATA);
wait_cr_ack();
return readl(SATA_PHY_ASIC_STAT);
}
static void write_cr(unsigned short data, unsigned short address)
{
writel(address, SATA_PHY_ASIC_STAT);
wait_cr_ack();
writel((data | CR_CAP_DATA), SATA_PHY_ASIC_DATA);
wait_cr_ack();
writel(CR_WRITE_ENABLE, SATA_PHY_ASIC_DATA);
wait_cr_ack();
return;
}
void workaround5458(void)
{
unsigned i;
for (i = 0; i < 2; i++) {
unsigned short rx_control = read_cr(0x201d + (i << 8));
rx_control &= ~(PH_GAIN_MASK | FR_GAIN_MASK);
rx_control |= PH_GAIN << PH_GAIN_OFFSET;
rx_control |= FR_GAIN << FR_GAIN_OFFSET;
rx_control |= USE_INT_SETTING;
write_cr(rx_control, 0x201d + (i << 8));
}
}
int ide_preinit(void)
{
int num_disks_found = 0;
/* Initialise records of which disks are present to all present */
int i;
for (i = 0; i < CONFIG_SYS_IDE_MAXDEVICE; i++) {
disk_present[i] = 1;
}
/* Block reset SATA and DMA cores */
reset_block(SYS_CTRL_RST_SATA, 1);
reset_block(SYS_CTRL_RST_SATA_LINK, 1);
reset_block(SYS_CTRL_RST_SATA_PHY, 1);
reset_block(SYS_CTRL_RST_SGDMA, 1);
/* Enable clocks to SATA and DMA cores */
enable_clock(SYS_CTRL_CLK_SATA);
enable_clock(SYS_CTRL_CLK_DMA);
udelay(5000);
reset_block(SYS_CTRL_RST_SATA_PHY, 0);
udelay(50);
reset_block(SYS_CTRL_RST_SATA, 0);
reset_block(SYS_CTRL_RST_SATA_LINK, 0);
udelay(50);
reset_block(SYS_CTRL_RST_SGDMA, 0);
udelay(100);
/* Apply the Synopsis SATA PHY workarounds */
workaround5458();
udelay(10000);
/* disable and clear core interrupts */
*((unsigned long*) SATA_HOST_REGS_BASE + SATA_INT_ENABLE_CLR_OFF) =
~0UL;
*((unsigned long*) SATA_HOST_REGS_BASE + SATA_INT_CLR_OFF) = ~0UL;
int device;
for (device = 0; device < CONFIG_SYS_IDE_MAXDEVICE; device++) {
int found = 0;
int retries = 1;
/* Disable SATA interrupts */
*(sata_regs_base[device] + SATA_INT_ENABLE_CLR_OFF) = ~0UL;
/* Clear any pending SATA interrupts */
*(sata_regs_base[device] + SATA_INT_CLR_OFF) = ~0UL;
do {
/* clear sector count register for FIS detection */
ide_outb(device, ATA_PORT_NSECT, 0);
/* Get the PHY working */
if (!phy_reset(device)) {
printf("SATA PHY not ready for device %d\n",
device);
break;
}
if (!wait_FIS(device)) {
printf("No FIS received from device %d\n",
device);
} else {
if ((scr_read(device, SATA_SCR_STATUS) & 0xf)
== 0x3) {
if (wait_not_busy(device, 30)) {
printf("Timed out of wait for SATA device %d to have BUSY clear\n",
device);
} else {
++num_disks_found;
found = 1;
}
} else {
printf("No SATA device %d found, PHY status = 0x%08x\n",
device,
scr_read(
device,
SATA_SCR_STATUS));
}
break;
}
} while (retries--);
/* Record whether disk is present, so won't attempt to access it later */
disk_present[device] = found;
}
/* post disk detection clean-up */
for (device = 0; device < CONFIG_SYS_IDE_MAXDEVICE; device++) {
if (disk_present[device]) {
/* set as ata-5 (28-bit) */
*(sata_regs_base[device] + SATA_DRIVE_CONTROL_OFF) =
0UL;
/* clear phy/link errors */
scr_write(device, SATA_SCR_ERROR, ~0);
/* clear host errors */
*(sata_regs_base[device] + SATA_CONTROL_OFF) |=
SATA_SCTL_CLR_ERR;
/* clear interrupt register as this clears the error bit in the IDE
status register */
*(sata_regs_base[device] + SATA_INT_CLR_OFF) = ~0UL;
}
}
return !num_disks_found;
}