The LinkIt Smart 7688/LinkIt Smart 7688 Duo are identical beside the
extra ATmega32U4 - accessible via UART - on the the Duo.
Since all relevant hardware is identical, drop the Duo special handling
in userspace.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Use the first compatible string as board name in userspace. Add the new
board name as well as the former used board name to the image metadata
to keep compatibilty with already deployed installations.
Don't add the former used boardname for boards which exists only in
master or evaluation boards.
Signed-off-by: Mathias Kresin <dev@kresin.me>
This commit improves support for the Xiaomi Mi Router 3G originally
added in commit 6e283cdc0d
Improvements:
- Remove software watchdog as hardware watchdog now working as per
commit 3fbf3ab44f for all mt7621
devices.
- Reset button polarity corrected - length of press determines reboot
(short press) vs. reset to defaults (long press) behaviour.
- Enable GPIO amber switch port LEDs on board rear - lit indicates 1Gbit
link and blink on activity. Green LEDs driven directly by switch
indicating any link speed and tx activity.
- USB port power on/off GPIO exposed as 'usbpower'
- Add access to uboot environment settings for checking/setting uboot
boot order preference from user space.
Changes:
- Front LED indicator is physically made of independent Yellow/Amber,
Red & Blue LEDs combined via a plastic 'lightpipe' to a front panel
indicator, hence the colour behaviour is similar to an RGB LED. RGB
LEDs are not supported at this time because they produce colour results
that do not then match colour labels, e.g. enabling 'mir3g:red' and
'mir3g:blue' would result in a purple indicator and we have no such
label for purple.
The yellow, red & blue LEDs have been split out as individual yellow,
red & blue status LEDs, with yellow being the default status LED as
before and with red's WAN and blue's USB default associations removed.
- Swapped order of vlan interfaces (eth0.1 & eth0.2) to match stock vlan
layout. eth0.1 is LAN, eth0.2 is WAN
- Add 'lwlll' vlan layout to mt7530 switch driver to prevent packet
leakage between kernel switch init and uci swconfig
uboot behaviour & system 'recovery'
uboot expects to find bootable kernels at nand addresses 0x200000 &
0x600000 known by uboot as "system 1" and "system 2" respectively.
uboot chooses which system to hand control to based on 3 environment
variables: flag_last_success, flag_try_sys1_failed & flag_try_sys2_failed
last_success represents a preference for a particular system and is set
to 0 for system 1, set to 1 for system 2. last_success is considered *if*
and only if both try_sys'n'_failed flags are 0 (ie. unset) If *either*
failed flags are set then uboot will attempt to hand control to the
non failed system. If both failed flags are set then uboot will check
the uImage CRC of system 1 and hand control to it if ok. If the uImage
CRC of system is not ok, uboot will hand control to system 2
irrespective of system 2's uImage CRC.
NOTE: uboot only ever sets failed flags, it *never* clears them. uboot
sets a system's failed flag if that system's was selected for boot but
the uImage CRC is incorrect.
Fortunately with serial console access, uboot provides the ability to
boot an initramfs image transferred via tftp, similarly an image may
be flashed to nand however it will flash to *both* kernels so a backup
of stock kernel image is suggested. Note that the suggested install
procedure below set's system 1's failed flag (stock) thus uboot ignores
the last_success preference and boots LEDE located in system 2.
Considerable thought has gone into whether LEDE should replace both
kernels, only one (and which one) etc. LEDE kernels do not include a
minimal rootfs and thus unlike the stock kernel cannot include a
method of controlling uboot environment variables in the event of
rootfs mount failure. Similarly uboot fails to provide an external
mechanism for indicating boot system failure.
Installation - from stock.
Installation through telnet/ssh:
- copy lede-ramips-mt7621-mir3g-squashfs-kernel1.bin and
lede-ramips-mt7621-mir3g-squashfs-rootfs0.bin to usb disk or wget it
from LEDE download site to /tmp
- switch to /extdisks/sda1/ (if copied to USB drive) or to /tmp if
wgetted from LEDE download site
- run: mtd write lede-ramips-mt7621-mir3g-squashfs-kernel1.bin kernel1
- run: mtd write lede-ramips-mt7621-mir3g-squashfs-rootfs0.bin rootfs0
- run: nvram set flag_try_sys1_failed=1
- run: nvram commit
- run: reboot
Recovery - to stock.
Assuming you used the above installation instructions you will have a
stock kernel image in system 1. If it can be booted then it may be used
to perform a stock firmware recovery, thus erasing LEDE completely. From
a 'working' LEDE state (even failsafe)
Failsafe only:
- run: mount_root
- run: sh /etc/uci-defaults/30_uboot-envtools
Then do the steps for 'All'
All:
- run: fw_setenv flag_try_sys2_failed 1
- run: reboot
The board will reboot into system 1 (stock basic kernel) and wait with
system red light slowly blinking for a FAT formatted usb stick with a
recovery image to be inserted. Press and hold the reset button for
around 1 second. Status LED will turn yellow during recovery and blue
when recovery complete.
Signed-off-by: Kevin Darbyshire-Bryant <ldir@darbyshire-bryant.me.uk>
IPQ806x AP148 and DB149 boards didn't have the UCI ubootenv
section initialized, so the usage of fw_printenv required manual
configuration. With this change, the "fw_printenv" and "fw_setenv"
command will automatically work on NOR and NAND based platforms.
Signed-off-by: Ram Chandra Jangir <rjangir@codeaurora.org>
EnGenius ENS202EXT is an outdoor wireless access point with
2-port 10/100 switch, detachable antennas and proprietery PoE.
The device is based on Qualcomm/Atheros AR9341 v1.
Specifications:
- 535/400/200 MHz (CPU/DDR/AHB)
- 64 MB of RAM
- 16 MB of FLASH
- UART (J1) header on PCB (unpopulated)
- 2x 10/100 Mbps Ethernet
- 2.4 GHz, up to 26dBm
- 2x external, detachable antennas
- 7x LED, 1x button
Flash instructions:
You have three options:
- Use the vendor firmware upgrade page on the web interface and give
it the factory.img. This is the easiest way to go about it.
- If you have serial access during u-boot, interrupt the normal boot
(any key before timeout) and run 'run failsafe_boot'; this will bring
you to a minimal openwrt luci image on ip 192.168.1.1 useful if you've
bricked the normal firmware.
- Use the vendor's management cli, which can be accessed via telnet
with the same credentials as the web login (default admin:admin), then
issue the following commands:
*** Hi admin, welcome to use cli(V-1.6.7) ***
---========= Commands Help =========---
stat -- Status
sys -- System
wless2 -- 2.4G-Wireless
mgmt -- Management
tree -- Tree
help -- Help
reboot -- Reboot
ens202ext>mgmt
Management
---========= Commands Help =========---
admin -- Administration
mvlan -- Management VLAN settings
snmp -- SNMP settings
backup -- Backup/Restore settings
autorb -- Auto reboot settings
fwgrade -- Firmware upgrade
time -- Time settings
wifisch -- Wifi schedule
log -- Log
diag -- Diagnostics
disc -- Device Discovery
logout -- Logout
help -- Help
exit -- Exit
ens202ext/mgmt>fwgrade
Management --> Firmware upgrade
---========= Commands Help =========---
fwup -- Firmware upgrade
help -- Help
exit -- Exit
ens202ext/mgmt/fwgrade>fwup http://web.server/lede-ar71xx-generic-ens202ext-squashfs-factory.bin
Signed-off-by: Marty Plummer <ntzrmtthihu777@gmail.com>
Use fixed led names and add each board variant instead of manipulating
the board name.
It makes the ramips board name function less different to the one used
in other targets and allows to merge them with a common function.
Signed-off-by: Mathias Kresin <dev@kresin.me>
The Pistachio target is a MIPS interaptiv based SoC developed by
Imagination Technologies. It includes blocks for i2c, spi, audio,
usb and WiFi.
This also adds the base support for the 'Creator Ci40 (marduk)'
device which uses the Pistachio SoC to create an IoT hub by
including Bluetooth, WiFi and 6lowpan on one board. Additionally 2x
Mikrobus ports are available to expand with further RF technologies
or add sensors. You can find out more here http://creatordev.io.
Note, this commit is just the initial board support hence the
following are not expected to work yet:
* WiFi
* Bluetooth
* 6lowpan
* Audio
* Mikrobus uarts, user leds (clock dependency of 6lowpan chip)
The aim of this commit is to essentially have the same level of
support that currently exists in the mainline kernel.
Signed-off-by: Abhijit Mahajani <Abhijit.Mahajani@imgtec.com>
Signed-off-by: Francois Berder <francois.berder@imgtec.com>
Signed-off-by: Ian Pozella <Ian.Pozella@imgtec.com>
Signed-off-by: Mayank Sirotiya <Mayank.Sirotiya@imgtec.com>
Signed-off-by: Sean Kelly <Sean.Kelly@imgtec.com>
accessing the u-boot's envs on this device is required to read the mac address.
These are the envs of the new u-boot, not of the stock one.
Signed-off-by: Alberto Bursi <alberto.bursi@outlook.it>
Few minor code formatting style fixes, including:
- keep one board per line
- always use "|\" (for consistency)
- remove redundant double quotes and empty lines
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Xiaomi MiWiFi Nano is based on Mediatek MT7628 with 64MB ram 16MB flash
Signed-off-by: Noble Pepper <openwrtmail@noblepepper.com>
v3 includes changes suggested by L. D. Pinney & Karl Palsson-
Eliminate en25q64 (4MB) flash chip
Alphabetization
Remove hyphen in model
Rename profile from miwifinano.mk to xiaomi.mk
Add gpios that are attached to leds
SVN-Revision: 49024
OpenWrt configuration part of support for the PowerCloud Systems
CR5000. The CR5000 is a dual-band 802.11n wireless router with
8MB flash, 64MB RAM, (unused on stock firmware) USB 2.0 port and
five port gigabit ethernet switch. The CR5000 was sold as
hardware for the Skydog cloud-managed router service.
Signed-off-by: Daniel Dickinson <openwrt@daniel.thecshore.com>
SVN-Revision: 47946